Bioinformatics
Biocomputing and
Perl

An Introduction to Bioinformatics
Computing Skills and Practice

Michael Moorhouse

Post-Doctoral Worker from Erasmus MC,
The Netherlands

Paul Barry

Department of Computing and Networking,
Institute of Technology,
Carlow, Ireland

John Wiley & Sons, Ltd



Copyright 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988
or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham
Court Road, London WI1T 4LP, UK, without the permission in writing of the Publisher. Requests
to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd,
The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to
permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold on the understanding that the Publisher is not engaged in

rendering professional services. If professional advice or other expert assistance is required,
the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada MOW 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-85331-X

Typeset in 9.5/12.5pt Lucida Bright by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.



For my parents, who taught me the value of
knowledge - MJM

For three great kids: Joseph, Aaron and Aideen - PJB



Preface

Contents

): 4%

1 Setting the Biological Scene 1
1.1 Introducing Biological Sequence Analysis 1

1.2 Protein and Polypeptides 4

1.3 Generalised Models and their Use 5

1.4 The Central Dogma of Molecular Biology 6

1.4.1 Transcription 6

1.4.2 Translation 7

1.5 Genome Sequencing 10

1.5.1 Sequence assembly 11

1.6 The Example DNA-gene-protein system we will use 12
Where to from Here 13

2 Setting the Technological Scene 15
2.1 The Layers of Technology 15
2.1.1 From passive user to active developer 16

2.2 Finding peri 17
2.2.1 Checking for perl 17

Where to from Here 18

I Working with Perl 19
3 The Basics 21
3.1 Let’s Get Started! 21
3.1.1 Running Perl programs 22

3.1.2 Syntax and semantics 23

3.1.3  Program: run thyself! 25

3.2 Iteration 26
3.2.1 Using the Perl while construct 26

3.3 More Iterations 30
3.3.1 Introducing variable containers 31

3.3.2 Variable containers and loops 32



viii

Contents

3.4 Selection

3.4.1 Using the Perl if construct
3.5 There Really is MTOWTDI
3.6 Processing Data Files

3.6.1 Asking getlines to do more
3.7 Introducing Patterns

Where to from Here

The Maxims Repeated

Places to Put Things

4.1 Beyond Scalars

4.2 Arrays: Associating Data with Numbers
4.2.1 Working with array elements
4.2.2 How big is the array?
4.2.3 Adding elements to an array
4.2.4 Removing elements from an array
4.2.5 Slicing arrays
4.2.6 Pushing, popping, shifting and unshifting
4.2.7 Processing every element in an array
4.2.8 Making lists easier to work with

4.3 Hashes: Associating Data with Words
4.3.1 Working with hash entries
4.3.2 How big is the hash?
4.3.3 Adding entries to a hash
4.3.4 Removing entries from a hash
4.3.5 Slicing hashes

4.3.6 Working with hash entries: a complete example

4.3.7 Processing every entry in a hash
Where to from Here
The Maxims Repeated

Getting Organised

5.1 Named Blocks
5.2 Introducing Subroutines
5.2.1 Calling subroutines
5.3 Creating Subroutines
5.3.1 Processing parameters
5.3.2  Better processing of parameters
5.3.3  Even better processing of parameters
5.3.4 A more flexible drawl1ine subroutine
5.3.5 Returning results
5.4 Visibility and Scope
5.4.1 Using private variables
5.4.2 Using global variables properly
5.4.3 The final version of drawline
5.5 In-built Subroutines
5.6 Grouping and Reusing Subroutines
5.6.1 Modules
5.7 The Standard Modules
5.8 CPAN: The Module Repository
5.8.1  Searching CPAN
5.8.2 Installing a CPAN module manually



Contents

5.8.3 Installing a CPAN module automatically
5.8.4 A final word on CPAN modules

Where to from Here

The Maxims Repeated

About Files
6.1 I/0: Input and Output
6.1.1 The standard streams: STDIN, STDOUT and STDERR
6.2 Reading Files
6.2.1 Determining the disk-file names
6.2.2  Opening the named disk-files
6.2.3 Reading a line from each of the disk-files
6.2.4  Putting it all together
6.2.5 Slurping
6.3 Writing Files
6.3.1 Redirecting output
6.3.2  Variable interpolation
6.4 Chopping and Chomping

Where to from Here
The Maxims Repeated

Patterns, Patterns and More Patterns

7.1 Pattern Basics
7.1.1 What is a regular expression?
7.1.2  What makes regular expressions so special?
7.2 Introducing the Pattern Metacharacters
7.2.1 The + repetition metacharacter
7.2.2  The | alternation metacharacter
7.2.3  Metacharacter shorthand and character classes
7.2.4 More metacharacter shorthand
7.2.5 More repetition
7.2.6 The ? and * optional metacharacters
7.2.7 The any character metacharacter
7.3 Anchors
7.3.1 The \b word boundary metacharacter
7.3.2 The " start-of-line metacharacter
7.3.3 The $ end-of-line metacharacter
7.4 The Binding Operators
7.5 Remembering What Was Matched
7.6 Greedy by Default
7.7 Alternative Pattern Delimiters
7.8 Another Useful Utility
7.9 Substitutions: Search and Replace
7.9.1 Substituting for whitespace
7.10 Finding a Sequence
Where to from Here
The Maxims Repeated
Perl Grabbag
8.1 Introduction
8.2 Strictness

99
99
100
100

103

103
103
105
106
108
110
110
114
116
117
117
118
119
119

121

121
122
122
124
124
126
127
128
130
130
131
132
132
133
133
134
135
137
138
139
140
141
142
146
146

147

147
147



X

II

10

Contents

8.3 Perl One-liners
8.4 Running Other Programs from per1
8.5 Recovering from Errors
8.6 Sorting
8.7 HERE Documents

Where to from Here

The Maxims Repeated
Working with Data

Downloading Datasets

9.1
9.2

Let’s Get Data

Downloading from the Web

9.2.1 Using wget to download PDB data-files
9.2.2 Mirroring a dataset

9.2.3 Smarter mirroring

9.2.4 Downloading a subset of a dataset
Where to from Here

The Maxims Repeated

The Protein Databank

10.1
10.2

10.3
10.4

10.5

10.6

10.7
10.8

10.9

10.10

Introduction

Determining Biomolecule Structures

10.2.1 X-Ray Crystallography

10.2.2 Nuclear magnetic resonance

10.2.3 Summary of protein structure methods
The Protein Databank

The PDB Data-file Formats

10.4.1 Example structures

10.4.2 Downloading PDB data-files

Accessing Data in PDB Entries

Accessing PDB Annotation Data

10.6.1 Free R and resolution

10.6.2 Database cross references

10.6.3 Coordinates section

10.6.4 Extracting 3D coordinate data

Contact Maps

STRIDE: Secondary Structure Assignment
10.8.1 Installation of STRIDE

Assigning Secondary Structures

10.9.1 Using STRIDE and parsing the output
10.9.2 Extracting amino acid sequences using STRIDE
Introducing the mmCIF Protein Format

10.10.1 Converting mmCIF to PDB

10.10.2 Converting mmCIFs to PDB with CIFTr
10.10.3 Problems with the CIFTr conversion
10.10.4 Some advice on using mmCIF

10.10.5 Automated conversion of mmCIF to PDB
Where to from Here

The Maxims Repeated

149
152
153
155
159
160
161

163

165

165
165
167
168
168
169
171
171

173

173
174
174
176
177
177
179
180
181
182
183
184
186
188
191
192
196
197
197
200
204
205
206
206
208
208
208
210
210



Contents

11 Non-redundant Datasets

11.1

Introducing Non-redundant Datasets

11.1.1 Reasons for redundancy

11.1.2 Reduction of redundancy

11.1.3 Non-redundancy and non-representative
Non-redundant Protein Structures

Where to from Here

The Maxims Repeated

12 Databases

12.1

Introducing Databases

12.1.1 Relating tables

12.1.2 The problem with single-table databases
12.1.3 Solving the one-table problem

12.1.4 Database system: a definition

Available Database Systems

12.2.1 Personal database systems

12.2.2 Enterprise database systems

12.2.3 Open source database systems

SQL: the Language of Databases

12.3.1 Defining data with SQL

12.3.2 Manipulating data with SQL

A Database Case Study: MER

12.4.1 The requirement for the MER database

12.4.2 Installing a database system

12.4.3 Creating the MER database

12.4.4 Adding tables to the MER database

12.4.5 Preparing SWISS-PROT data for importation
12.4.6 Importing tab-delimited data into proteins
12.4.7 Working with the data in proteins

12.4.8 Adding another table to the MER database
12.4.9 Preparing EMBL data for importation

12.4.10 Importing tab-delimited data into dnas
12.4.11 Working with the data in dnas

12.4.12 Relating data in one table to that in another
12.4.13 Adding the crossrefs table to the MER database
12.4.14 Preparing cross references for importation
12.4.15 Importing tab-delimited data into crossrefs
12.4.16 Working with the data in crossrefs

12.4.17 Adding the citations table to the MER database
12.4.18 Preparing citation information for importation
12.4.19 Importing tab-delimited data into citations
12.4.20 Working with the data in citations

Where to from Here

The Maxims Repeated

13 Databases and Perl

13.1
13.2
13.3

Why Program Databases?

Perl Database Technologies
Preparing Perl

13.3.1 Checking the DBI installation

xi

211

211
211
212
212
213
217
217

219

219
220
222
222
224
224
225
225
225
226
226
227
227
231
232
233
235
238
245
246
248
249
253
253
254
255
256
259
259
263
265
268
268
269
269

273

273
274
275
275



xii

III

14

15

16

v

17

Contents

13.4

13.5
13.6
13.7

Programming Databases with DBI

13.4.1 Developing a database utility module
13.4.2 Improving upon dump_results
Customising Output

Customising Input

Extending SQL

Where to from Here

The Maxims Repeated

Working with the Web

The Sequence Retrieval System

14.1 An Example of What'’s Possible
14.2  Why SRS?
14.3 Using SRS
Where to from Here
The Maxims Repeated
Web Technologies
15.1 The Web Development Infrastructure
15.2 Creating Content for the WWW
15.2.1 The static creation of WWW content
15.2.2 The dynamic creation of WWW content
15.3 Preparing Apache for Perl
15.3.1 Testing the execution of server-side programs
15.4 Sending Data to a Web Server
15.5 Web Databases

Where to from Here
The Maxims Repeated

Web Automation

16.1
16.2

Why Automate Surfing?
Automated Surfing with Perl
Where to from Here

The Maxims Repeated

Working with Applications

Tools and Datasets

17.1
17.2

17.3

Introduction

Sequence Databases

17.2.1 Understanding EMBL entries

17.2.2 Understanding SWISS-PROT entries
17.2.3 Summarising sequences databases
General Concepts and Methods

17.3.1 Predictions and validation

17.3.2 True/False/Negative/Positive

276
279
280
282
285
289
292
292

295

297

297
298
298
300
300

303

303
305
308
308
310
312
315
320
327
327

329

329
330
335
336

337

339

339
340
343
346
347
347
348
348



17.4

17.5

Contents

17.3.3 Balancing the errors

17.3.4 Using multiple algorithms to improve performance
17.3.5 tRNA-ScanSE, a case study

Introducing Bioinformatics Tools

17.4.1 ClustalW

17.4.2 Algorithms and methods

17.4.3 Installation and use

17.4.4 Substitution/scoring matrices

BLAST

17.5.1 Installing NCBI-BLAST

17.5.2 Preparation of database files for faster searching
17.5.3 The different types of BLAST search

17.5.4 Final words on BLAST

Where to from Here

The Maxims Repeated

18 Applications

19

18.1
18.2

18.3

18.4

18.5

18.6

18.7
18.8

18.9

Introduction

Scientific Background to Mer Operon

18.2.1 Function

18.2.2 Genetic structure and regulation

18.2.3 Mobility of the Mer Operon

Downloading the Raw DNA Sequence

Initial BLAST Sequence Similarity Search

GeneMark

18.5.1 Using BLAST to identify specific sequences
18.5.2 Dealing with false negatives and missing proteins
18.5.3 Over-predicted genes and false positives
18.5.4 Summary of validation of GeneMark prediction
Structural Prediction with SWISS-MODEL

18.6.1 Alternatives to homology modelling

18.6.2 Modelling with SWISS-MODEL

DeepView as a Structural Alignment Tool

PROSITE and Sequence Motifs

18.8.1 Using PROSITE patterns and matrices

18.8.2 Downloading PROSITE and its search tools
18.8.3 Final word on PROSITE

Phylogenetics

18.9.1 A look at the HMA domain of MerA and MerP
Where to from Here?

The Maxims Repeated

Data Visualisation

19.1
19.2

19.3

Introducing Visualisation

Displaying Tabular Data Using HTML
19.2.1 Displaying SWISS-PROT identifiers
Creating High-quality Graphics with GD
19.3.1 Using the GD module

19.3.2 Displaying genes in EMBL entries
19.3.3 Introducing mogrify

xiii

351
352
353
357
358
359
360
361
362
364
365
369
371
371
371

373

373
374
374
374
375
377
378
380
382
386
387
388
388
390
390
396
401
402
403
407
407
407
410
411

413

413
415
417
42?2
424
426
429



xiv Contents

19.4 Plotting Graphs
19.4.1 Graph-plotting using the GD: : Graph modules
19.4.2 Graph-plotting using Grace
Where to from Here
The Maxims Repeated

20 Introducing Bioperl

20.1 What is Bioperl?
20.2  Bioperl’s Relationship to Project Ensembl
20.3 Installing Bioperl
20.4 Using Bioperl: Fetching Sequences
20.4.1 Fetching multiple sequences
20.4.2 Extracting sub-sequences
20.5 Remote BLAST Searches
20.5.1 A quick aside: the blastc13 NetBlast client
20.5.2 Parsing BLAST outputs
Where to from Here
The Maxims Repeated

A Appendix A

B Appendix B

C Appendix C

D Appendix D

E Appendix E

F Appendix F

Index

431
432
433
439
439

441

441
442
442
444
445
447
448
449
450
451
452

453

457

459

461

467

471

475



Preface

Welcome to Bioinformatics, Biocomputing and Perl, an introduction and guide to
the computing skills and practices collectively known as Bioinformatics.

Bioinformatics is the application of computing techniques to the study of
biology, and in particular biology research. Although the study of biology is
hundreds of years old, the application of computing techniques to biology
research is relatively new, with major advances occurring within the last decade.
Consequently, the Bioinformatics field is evolving and maturing rapidly, and this
has highlighted the need for a good, all-round introductory textbook. We believe
that Bioinformatics, Biocomputing and Perl meets this need.

What is in this Book?

After two introductory chapters, Bioinformatics, Biocomputing and Perl is divided
into four main parts:

1. Working with Perl.
2. Working with Data.
3. Working with the Web.

4. Working with Applications.

Part I, Working with Perl, introduces programming to the student of Bioinfor-
matics. Note that the intention is not to turn Bioinformaticians into software
engineers. Rather, the emphasis is on providing Bioinformaticians with program-
ming skills sufficient to enable them to produce bespoke programs when required
in the course of their research.

The programming language of choice among Bioinformaticians, Perl, is used
throughout Part L. Perl is popular because of its combination of excellent file-
handling capabilities, native support for POSIX regular expressions and powerful



xvi Preface

scripting capabilities. If that sounds like techno babble, do not worry; the impor-
tance of these programming language features is explained in a less technical way
later. Fortunately, Perl is not particularly difficult to learn. For instance, by the
end of Chapter 3, the reader will know enough Perl to be able to produce simple,
but useful, programs. This early material is then developed so that by the end
of Part I, readers will be able to confidently create customised and customisable
programs to solve diverse Bioinformatics problems.

In Part II, Working with Data, the emphasis shifts from creating bespoke
Bioinformatics programs to exploring the tools and techniques used to organise,
store, retrieve and process data. After explaining how to download datasets from
the Internet, the Protein DataBank (PDB) is described in detail. A short chapter
follows on the importance of non-redundant datasets, before discussion shifts to
cover relational database management systems. How to create and use databases
with the popular MySQL tool is described. In addition to using standard tools to
interact with databases, the use of Perl programs to interrogate databases is also
covered.

Part III, Working with the Web, covers a collection of web-based technologies
that, once mastered, can be used to publish research -- both findings and data -- on
the Internet. Electronic mechanisms allowing interaction with, and interrogation
of, web-based data are explained. Perl again plays an important role in this part
of the book, with HTML and CGI also covered.

Part IV, Working with Applications, describes a set of standard Bioinformatics
tools and applications. Although it is often useful to be able to create a new tool
from scratch, it can sometimes be more appropriate to take existing tools and
control their execution and interaction. Scripting technologies, of which Perl is
only one type, are particularly useful in this area. A discussion of “The Bioperl
Project”, and its importance, completes Bioinformatics, Biocomputing and Perl.

Maxims, Commentaries, Exercises and Appendices

All but the first two chapters contain a collection of maxims. These are your
authors’ snippets of wisdom. At the end of each chapter, the maxims are repeated
in list form. If, having worked through a chapter, the maxims are understood, it
is an indication that the associated material has been understood. If, however, a
maxim is not understood, it indicates that there is a need to review the material
to which the particular maxim relates.

In addition to the maxims, chapters include technical commentaries. Unlike
maximes, it is not necessary to fully understand the commentaries on first reading.
If a technical commentary is not immediately understood, it is possible to safely
continue to work through the text without too much difficulty.

The majority of chapters conclude with a set of exercises that are designed
to expand upon the material introduced. It is highly recommended that these



Preface xvii

exercises are worked through, as it is only through practice and review that
Bioinformatics computing skills are developed and honed.

A collection of appendices completes the book, providing information on,
among other things, installing Perl on various platforms, the Perl on-line doc-
umentation and a list of Perl operators. An annotated list of references and
suggestions for further reading are also presented as an appendix.

Who Should Read this Book

This book targets three distinct readerships.

The main target is the student of biology, both under- and post-graduate. Bioin-
formatics, Biocomputing and Perl is designed to be the must-have, introductory
Bioinformatics textbook. The biology student taking a Bioinformatics module will
find this book to be a useful starting point and an essential desktop reference.

Another target is the qualified, professional or academic biologist who needs
to understand more about Bioinformatics. The field of Bioinformatics is still
relatively new and it is only now appearing as a feature within biology course
outlines and syllabi. However, there are many qualified biologists “in the field”
requiring a good primer. This book is designed to meet that need.

The final target is the computer scientist curious to understand how computing
skills might be used within this growing field.

What you Should know Already

It is assumed that some knowledge of computer use has already been acquired,
including understanding the concept of a disk-file and knowing how to create one
using an editor. On the Linux operating system, popular editors are vi, pico and
emacs. On any of the Windows operating systems, Notepad, WordPad and Word
are all editors, although the latter is a more sophisticated example. Macintosh
users have SimpleText and BBedi t. Any of these will suffice, so long as it allows
for the creation and manipulation of plain text files. Later chapters (Parts III and
IV) assume a working knowledge of HTML.

Platform Notes

All of the examples in Bioinformatics, Biocomputing and Perl are designed to
operate on the Linux operating system, in keeping with the current trend within
the Bioinformatics community. There is no attempt to explain all that the reader
needs to know about Linux, as the emphasis in this book is on explaining how
to exploit the growing collection of tools that run on top of the Linux operating



xviii Preface

system. Two additional appendices provide a list of essential Linux commands
and a quick reference to the vi text editor, respectively.

Accompanying Web-site

Details of the book’s mailing list, its source code, any errata and other related
material can be found on the book’s web-site, located at:

http://glasnost.itcarlow.ie/ biobook/index.html

Your Comments are Welcome

The authors welcome all comments about Bioinformatics, Biocomputing and Perl.
Send an e-mail to either of the following addresses:

m.moorhouse@erasmusmc.nl

paul.barry@itcariow.ie

Acknowledgements

Michael thanks his parents for their unwavering support, be it material, practical
or emotional. Their endless hours of reading and re-reading the draft chapters
and manuscript produced many points of very welcome constructive criticism.
Although completing a PhD., moving country and starting a new job while writing
a book is not something he’d recommend, Michael thanks those around him for
helping when they could and for understanding why he was so busy. Also, thanks
to all in the new Department of Bioinformatics, Erasmus MC, the Netherlands,
who have offered their support and understanding.

Paul thanks his father, Jim Barry, for taking the time to proofread the text
(multiple times). As with Paul’s first book, this one is better for his father’s
involvement. Thanks go to Karen Mosman (formerly with Wiley’s Computing
Division) for suggesting Paul when the Biology Division came looking for an
author with Perl experience. The Institute of Technology, Carlow, was again
supportive of Paul working on a textbook, and thanks are due to Dr Dave
Dowling and Joe Kehoe for enthusiastically reviewing some of the early material.
Paul’s wife, Deirdre, held everything else together while the production of the
manuscript consumed more and more of his time, while Joseph, Aaron and
Aideen kept reminding Paul that there’s more to life than computers and writing.

Both authors thank the team at Wiley. Joan Marsh, this book’s publishing editor,
arranged for the authors to work together and never once complained when the
draft manuscript went from being days late to weeks late to -- eventually -- six



Preface xix

months late! This book’s editorial assistant was Layla Paggetti, and both authors
thank Layla for her prompt and efficient responses to their many queries. Robert
Hambrook acted as production editor. As with Paul’s first book, this one has
benefited greatly from Robert’s management of the production process.

A special word of thanks to those members of the computing and biology
communities who produce such wonderfully useful software technologies and
tools. There are many such individuals. Specific thanks to Richard Stallman, Linus
Torvalds, Larry Wall, Tom Boutell, Andy Lester and Dr Lincoln D. Stein for sharing
their software with the world and for providing the authors with technologies to
write about. Paul also thanks Bill Joy (for vi) and Leslie Lamport (for KIgX).



1.1

1

Setting the
Biological Scene

Introducing DNA, RNA, polypeptides, proteins and sequence
analysis.

Introducing Biological Sequence Analysis

Among other things, this book describes a number of techniques used to analyse
DNA, RNA and proteins.

To a molecular biologist, DNA is a very physical molecule: a polymer of
nucleotides that are collectively called deoxyribose nucleic acid. It coils, bends,
flexes and interacts with proteins, and is generally interesting. RNA is similar to
DNA in structure, but for the fact that RNA contains the sugar ribose as opposed
to deoxyribose. DNA has a hydrogen at the second carbon atom on the ring; RNA
has a hydrogen linked through an oxygen atom.

In DNA and RNA, there are four nucleotide bases. Three of these bases
are the same: guanine (G), adenine (A) and cytosine (C). The fourth base for
DNA is thymine (T), whereas in RNA, the fourth base lacks a methyl group
and is called uracil (U). Each base has two points at which it can join cova-
lently to two other bases on either end, forming a linear chain of monomers.
These chains can be quite long, with many millions of bases common in most
organismes.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 0 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X



2 Setting the Biological Scene

Figure 1.1 Adenine (A) and thymine (T) nucleotide bases (where the thin black lines
indicate the three hydrogen bonds between the two bases).

Another interesting feature of nucleotide bases is that the four bases hydrogen-
bond together in two exclusive pairs because of the position of the charged atoms
along their edges, as shown in Figure 1.1 on page 2 and Figure 1.2 on page 3!.
Three of these bonds form between C and G, whereas two form between A and T
(or A and U in RNA).

These bonds, while considerably weaker than the covalent bonds between
atoms, are enough to stabilise structures such as the famous double helix, in
which the bases line up nearly perpendicular to the axis of the helix, as shown
in Figure 1.3 on page 4. There are several important consequences of the double
helix:

e Where there is a G in one chain, there is a C in the corresponding location in
the other, and the two chains are said to be complementary to each other.
The chains are often referred to as strands.

e This complementarity means that there is 50% redundancy in the informa-
tion stored in both chains; consequently, only one chain is needed to store
all the information for both (as one can be deduced from the other)?.

e Because of the structure of the nucleotide bases, DNA molecules have
direction. This is a subtle, but important, point. The phosphate backbones
attach to the sugar rings at different locations: the 3’ and 5’ hydroxyl groups.

1
These diagrams were produced with Open Rasmol on the basis of protein structure 1D66.

2 . . . .
Of course, in an evolutionary world, where DNA can be damaged, keeping a spare copy is
an evolutionary advantage as an organism can often reconstruct the damaged regions from any
intact parts.



Introducing Biological Sequence Analysis 3

Figure 1.2 Guanine (G) and cytosine (C) nucleotide bases (where the thin black lines
indicate the three hydrogen bonds between the two bases).

When DNA is run in opposite directions, one end of the helix is the 3’ end
of one chain and the 5" end of the other. When the order of the nucleotide
bases is written down, it is conventional to start at the nucleotides at the 5’
(the ‘left-most’ nucleotide) end of the DNA molecule and work towards the
3’ end at the right (the ‘right-most’ base). The importance of this directional
feature will become clear later in this chapter, when open reading frames
are described.

In general, RNA copies of DNA are made by a process known as transcription.
For most purposes, RNA can be regarded as a working copy of the DNA master
template. There is usually one or a very small number of examples of DNA in the
cell, whereas there are multiple copies of the transcribed RNA.

A common term related to the number of nucleotide bases in a particular
sequence is a reference to base pairs3, for example “400 base pairs”. This term
is a generic term that can literally mean “400 paired bases”. More often, though,
it is used to acknowledge that while there are 400 nucleotides in a particular
sequence being actively considered, there are another 400 nucleotides on the
complementary strand running in the other direction. In this context, the use of
base pairs is a tacit acknowledgement of their existence that may be of great
importance, as the feature under investigation may be on the other strand. In
nearly all cases, both strands should be considered.

There are many interesting features of DNA. As this discussion is an overview, a
description of some of these features (such as promoters, splice sites, intron/exon
boundaries and genes) is deferred until later chapters.

3 Or “bp”, for short.



1.2

4 Setting the Biological Scene

Figure 1.3 The DNA “double helix” (where the backbones, in black, run in opposite
directions).

Protein and Polypeptides

DNA is the nobility of the cellular world. Proteins are the worker-serfs.

To a biochemist, proteins are the functioning units of cellular life. Proteins
do physically useful things such as catalysing reactions, processing energy rich
molecules, pumping other molecules across cellular barriers and forming con-
nective and motility structures. Proteins do just about anything else in the cell
that can be considered “real work”.

In molecular terms, proteins are chains technically termed polypeptides and
formed from 20 different types of amino acids. These may be modified in different
ways to alter their properties, the structure that is formed and the final function
of the molecule. For example, certain amino acids can be glycosylated*, which can
be used as recognition tags, while other proteins associate with small molecules
called ligands that have special properties useful in the catalysis of reactions.

The structure of a protein is generally more variable than DNA. It is at the level
of proteins that the variety of the information contained in the order of DNA bases
is used. The result is that the amino acid chain produced fold into structures that
are closely linked to that particular protein’s functional role within the cell (and
these can vary enormously). This folding has another important consequence in
that parts of a protein (i.e. its amino acids) can be physically close together in
space, but distant in terms of their location in the sequence of the amino acids.

Consider, as an example, the well-studied catalytic triad of chymotrypsin. The
critical parts of the protein for its function (which is to degrade other proteins)
are the amino acids asparate at position 102 in the polypeptide chain, histidine
at 57 and serine at 195. The triad is presented in Figure 1.4 on page 5. The right-
hand side of the image shows the catalytic site in close-up, with the three critical
amino acids located closely in physical space, but distant in sequence. The inset
(left-hand image) shows the general structure of the protein demonstrating how
the complex folding of the chain brings these residues together.

4
Have sugars added.



1.3

Generalised Models and their Use 5

- ~{ Serine 195

Histidine 57

Asparate 102

b

Figure 1.4 The catalytic triad of chymotrypsin (PDB ID: 1AFQ).

Generalised Models and their Use

The relationships between DNA, RNA, protein, structure and function follow a
generalised model. Unfortunately, like most generalisations, it is oversimplistic
for many situations. If this is the case, why use it? There are two good reasons:

1. The modelis a “good enough” description of what happens most of the time.
Certainly, there are important exceptions. There are non-standard amino
acids included in proteins via some other mechanism (which are ignored in
this book). Possibilities such as the section of DNA coding for single protein
being discontinuous are additional complexities that are considered later.
However, overall, the model is a valuable approximation to reality that has
useful predictive power when working with new systems.

2. The model is a “lie-to-children”>: it allows the basic features to be under-
stood without confusing things by considering exceptions and enhance-
ments. Once such a simple system is understood, it can be extended to
cover more complex aspects and specific examples. In short, a start has to
be made somewhere, and the generalised model is as good a place to start
as anywhere.

Before considering the mechanisms by which information is conserved and
converted along the pathway, let’s consider another important point about the
abstract nature of the data to be used.

Bioinformaticians are generally concerned with information at an abstract
level: DNA, RNA and amino acid sequences are “just” strings of letters. It is
sometimes easy to forget that these are actual representations of molecules that
exist in the cellular world and, consequently, must interact with the physical

5
Jack Cohen, Ian Stewart and Terry Pratchett discuss this concept and some general theories
of science in their Science of the Discworld books. These are well worth a read if you fancy a
laugh while pretending to work.



1.4

1.4.1

6 Setting the Biological Scene

universe in general, let alone existing within a cellular environment. How much
a Bioinformatician needs to know about the real-world context of the data
being analysed depends on the analysis that is performed®. In some cases, quite
superficial knowledge suffices, while others require a deeper understanding of
the fundamental physical and biological processes at work.

Only through experience can the Bioinformatician hone the skill and profes-
sional judgement necessary to decide how much understanding of the underlying
biological system is needed for any particular analysis. The idealistic response
is “the more the better”, which is like all ideals: something to aim at but rarely
achieved in practice. Time is often a factor for the Bioinformatician. If too long is
spent becoming versed in the biological background, the risk of not completing
an analysis within a useful timescale will increase. Conversely, there is also the
risk of an analysis being compromised because too little is known about the
system under study. This is where the balance between the two extremes comes
in. This book attempts to guide the reader in this regard through the examples
presented and provide useful pointers beyond. However, in the end, it all comes
down to experience and professional judgement.

The Central Dogma of Molecular Biology

The DNA to Functional Protein Structure Model discussed above is often referred
to as the “Central Dogma of Molecular Biology”. It is summarised in a slightly
extended form in Figure 1.5 on page 6. The arrows represent information flow
from that stored in the order of the DNA bases through the folding of the
polypeptide chain to a fully functional protein.

Transcription

Transcription is the conversion of information from DNA to RNA, and is straight-
forward because of the direct correspondence between the four nucleotide bases
of DNA and those of RNA.

Transcription Translation
DNA » RNA »Protein
k /// .
AN e Folding
~ -~
Reverse
transcription Structure
v
Function

Figure 1.5 The central dogma of molecular biology.

6
This is so obvious that it is often forgotten.



1.4.2

The Central Dogma of Molecular Biology 7

There is an interesting exception in RNA Retroviruses, the most famous example
being HIV (the Human Immunodeficiency Virus) that causes AIDS. In retroviruses,
RNA is used as the information storage material. This is then copied (badly in
the case of HIV) into DNA, which then integrates into the nucleic acid material
of the cell under attack. This “trick” allows the virus (and its information) to lie
dormant for long periods in relative safety, whereas the original RNA material is
more likely to be actively degraded by cellular enzymes.

This RNA to DNA conversion ability is also useful for molecular biologists, as
DNA can be more easily stored or manipulated using standard techniques. This
has important implications, which are discussed later.

Translation

In a protein-coding region of DNA, three successive nucleotide bases, called
triplets or codons, are used to code for each individual amino acid. Three bases
are needed because there are 20 amino acids but only four nucleotide bases:
with one base there are four possible combinations; with two bases, 16 (42); with
three, 64 (43), which is more than the number of amino acids.

The RNA transcript is used by a complex molecular machine called the ribosome
to translate the order of successive codons into the corresponding order of amino
acids. Special stop codons, such as UAA, UAG and UGA, induce the ribosome to
terminate the elongation of the polypeptide chain at a particular point. Similarly,
the codon for the amino acid methionine (AUG in RNA) is often used as the start
signal for translation.

The section of DNA between the start and stop codons is called an open
reading frame. There is a complication in that the codons found depend on how
the sequence of nucleotide bases is divided. This is dependent on where the
count starts. There is no biological reason why the first nucleotide base reported
in a DNA sequence should be related to the protein coding regions.

A common solution is to calculate the codons produced from all possible open
reading frames and select the most plausible on the basis of the results. The
correct open reading frame for a particular region of DNA is generally that which
has the longest distance between any start and stop codons. Though there are
exceptions, especially in some viruses and bacteria, each nucleotide is involved
in coding for only one amino acid and, hence, only one open reading frame is
correct. The incorrect reading frames are generally short and as a consequence,
do not resemble recognisable proteins.

With three nucleotide bases in each codon, it is reasonable to assume that there
are reading frames starting at the first, second and third nucleotide bases relative
to a particular nucleotide. This is due to the fact that all subsequent reading
frames are repeated and could start to occur anywhere else in the sequence.
Consequently, it is easiest to start at the beginning. It is also important to
consider the other DNA chain that base-pairs with the one that you have as an
example, as this has another three reading frames. By convention, the reading on



8 Setting the Biological Scene

Zi: Edt Miew Gr Erabrar

-aog @ u T I BT O B SR T g ] [l seon | dsa

. ab ok | 3B0ecrais G Encls Sul

R M segusnces [0S

P Humm Aot FAL

R m Transm]
= Gwewesl Hiep
i oo | J\.aﬂvn-:o-:_cd.tlunc:\omm pnlgltpldsmtc 1.zan arelzlz
20z w17 DRI o e reverss oo a0 2l DS A or TUIRe fnes b n
* Cazs all ks Tares
- waTh —
= AziEreeas i ki
- SUEOSEE Troneoq 1= [ 1zt Vo =
Hzl:
Feghne ™ [ Caiwr
B Hr = = o=

Liplozd 2l Ere. Fu1 | Reo
e i e |

Figure 1.6 The EMBOSS/Transeq page at the EBL

the sequence under study are referred to as +1, +2 and +3, while those on the
complement strand are —1, —2 and —3.

The effects of choosing the correct and incorrect reading frames can be
investigated using the Transeq tool contained in the EMBOSS suite of programs.
As these tools are discussed later in this book, a number of the details are
glossed over here in favour of illustrating the point at hand. Figure 1.6 on
page 8 shows the Transeq interface provided by the EBI at the following Internet
address:

http://www.ebi.ac.uk/emboss/transeq/

For this example, consider bases Bases 1501 through 1800 from EMBL entry
M245940. This sequence is chosen because it contains the MerP protein. These
particular bases are easy to extract from a disk-file using any text editor. From
the entry, the six lines of DNA bases (near the end of the EMBL data-file) can
be copied. The line numbers at the end of each line can be removed and then
the resulting data can be pasted into the box on EMBOSS/Transeq WWW form
(refer to Figure 1.6). Here’s what the data looks like before the editing takes
place:

ggatttccct acgtcatgcc atttttctat taatcacagg agttcatcat gaaaaaactg 1560
tttgcctctc tcgccatcge tgccgttgtt gcccccgtgt gggccgccac ccagaccgtc 1620



The Central Dogma of Molecular Biology 9

acgctgtccg taccgggcat gacctgctcc gcttgtccga tcaccgttaa gaaggcgatt 1680
tccaaggtcg aaggcgtcag caaagttaac gtgaccttcg agacacgcga agcggttgtc 1740
accttcgatg atgccaagac cagcgtgcag aagctgacca aggccaccga agacgcgggce 1800
tatccgtcca gcgtcaagaa gtgaggcact gaaaacggca gcgcagcaca tctgacgccc 1860

If desired, the space between each group of ten letters can be removed using
any editor’s search-and-replace function. However, in the raw sequence, space
characters and newlines are ignored, so it is OK to leave them as-is when pasting
the data into the form.

The stand-alone, command-line version of Transeq has a parameter, called
-regions, that restricts translation to a specified range of bases. To use this
feature on the WWW form, insert “1501-1860" into the “Regions” box.

Technical Commentary: Note that the line numbers on the right-hand side of the
above extracted data are actually the index of the last base on the line. This means
that 1501 is the first base on the line that ends with 1560, as the bases are arranged
in six blocks of ten per line.

The results of this web-run are not shown. Here is the correct result, which is
reading frame +1 relative to the start point of the sequence just selected:

GFPYVMPFFY*SQEFIMKKLFASLATIAAVVAPVWAATQTVTLSVPGMTCSACPITVKKAI
SKVEGVSKVNVTFETREAVVTFDDAKTSVQKLTKATEDAGYPSSVKK*GTENGSAAHLTP

The underlined section is the MerP protein sequence. It starts with a Methionine
(M) start signal codon, which is ATG, as this is the DNA representation, not RNA.
It ends with * stop codon (which is TGA in DNA). The start and stop codons
are underlined in the original sequence block above. The rest of the triplet of
bases (the other codons) are translated by looking them up in standard codon
translation tables. These vary very little between organisms.

This translation of the DNA for the MerP protein is also documented in the
EMBL disk-file in annotation included with the original M15049 EMBL entry’s FT
annotation (where “F’ and “T” are taken from “feature”):

FT (DS 1549..1824

FT /codon_start=1

FT /db_xref="GOA:P13113"

FT /db_xref="SWISS-PROT:P13113"

FT /trans1_table=11

FT /gene="merP"

FT /product="mercury resistance protein"

FT /protein_id="AAA98223.1"

FT /translation="MKKLFASLATAAVVAPVWAATQTVTLSVPGMTCSACPITVKKAIS
FT KVEGVSKVNVTFETREAVVTFDDAKTSVQKLTKATEDAGYPSSVKK"

Note that all of the hard work is already done, including a cross reference to the
SWISS-PROT database (the “/db_xref=SWISS-PROT:P13113"” bit) as well as the
official translation of the DNA sequence”.

7
We will have more to say about SWISS-PROT and EMBL in later chapters.



1.5

10 Setting the Biological Scene

This introduction is purposefully straightforward. Things become more dif-
ficult when all that’s at hand is a small piece of DNA, the order of the bases
and, maybe, the name of the organism. Using these data to identify a protein is
returned to later in Bioinformatics, Biocomputing and Perl.

Once produced, the polypeptide chain must by folded in order to become
an active protein in the functional form. A common assertion is that all the
information needed to produce the defined structure of the fully functional
protein is contained in the amino acid sequence. In a very general sense, this
is true. However, it is only correct when the environment within which the
polypeptide exists is taken into account.

Genome Sequencing

The sequencing of an entire genome - the DNA content of a particular organ-
ism - is now relatively routine. Originally, it was performed in a very “cottage
industry” way, with small groups of researchers working away, in relative isola-
tion, at sequencing small sections of the complete genome.

Today, genome sequencing is “‘big science”, and there are numerous specialised
genome sequencing centres around the world, such as The Welcome Trust Sanger
Institute in the United Kingdom and The Center for Genome Research in the
United States. A number of commercial organisations sequence genomes on a
for-profit basis, with Celera Genomics the most famous - some would say “infa-
mous” - because of the company’s efforts to beat the publicly funded Human
Genome Project in being first to publish the draft human genome sequence. This
was in an effort to copyright and/or patent the information and, consequently,
charge money for the usage rights8.

In Bioinformatics, Biocomputing and Perl, the emphasis is on analysing the
DNA and protein sequences rather than understanding the technical details of
the methods by which the sequences are produced. However, it is important to
have (at least) a rudimentary knowledge of the technologies used to produce the
sequences. This allows the reader to better understand both the successes and
the problems associated with the processes, as well as how they influence the
data analysed. This description is very brief and intended to summarise the more
thorough treatments found in any general biochemistry or molecular biology
textbook.

Nowadays, most DNA is sequenced using the Dideoxynucleotide (Chain Termi-
nation) Method developed by Fredrick Sanger and his colleagues. This method
uses a modified DNA polymerase enzyme to make copies of the DNA present in
an original sample. As well as the normal DNA nucleotide bases present in the
reaction mixture, special di-deoxy versions are also included. These have hydro-
gen atoms instead of hydroxyl groups in the ribose sugar at two positions: the

8The scoundrels! Jeez ... why didn’t we think of that?



1.5.1

Genome Sequencing 11

2’ (as per normal DNA bases) and also at the 3’ position. This means that when
the DNA polymerase adds a di-deoxy base to the elongating DNA chain, no more
bases can be added to that chain. This is because the hydrogen at the 3’ position
is non-reactive compared to the hydroxyl group normally present. The result is
that the chain is essentially blocked from further extension at this length. As all
four di-deoxy nucleotides are added to the reaction mixture, there will be blocked
examples of the DNA molecules that terminate at every base.

These molecules can be separated from each other by the use of a polyacry-
lamide gel lattice, as shorter DNA molecules pass through it quickly, while longer
ones take more time. Each di-dedoxy nucleotide is labelled with a different flu-
orescent marker corresponding to the base type: A, T, G and C. This tag can be
excited by a laser scanning at a particular location and the base passing that point
at a particular time can be read off. The length of this “read” is typically about 500
bases before the separation between the molecules becomes too poor to deter-
mine which molecule is passing under the laser excitation position. Actually,
longer reads are possible but can result in reduced accuracy if special techniques
are not employed. For the purposes of this book, 500 bases is assumed to be
enough. Even if this were 250 or 1000, it would not algorithmically affect the
next step, which is sequence assembly. All that’s required is to do more or less
depending on the actual value chosen.

Sequence assembly

500 bp (base pairs nucleotides) is a short piece of DNA compared to the total
found in organisms. This can code for a protein of slightly over 165 aminos?,
which is a “none-too-large protein”. Yet even viruses that are not self sufficient
have many kilobases of DNA that have been sequenced. The general technique
is to sequence many 500 bp regions and then stitch them back together. This
has allowed the DNA sequence for a particular organism, commonly referred to
as “The Genome”, to be found. Nowadays, sequencing the genome is one of the
standard stages in the analysis of any sufficiently interesting organism, and the
threshold of interest that must be reached before resources are committed to
such a project continues to fall. The process is as follows:

e An individual organism (or a range of individual organisms) is selected as a
representative sample.

e The DNA of the organism is extracted.

o The DNA is fragmented and stored in biological vector molecules. Typically,
a series is used from those such as bacterial artificial chromosomes (BAC)
to store large amounts of DNA (up to many hundred of thousands of bases)
to cosmids containing up to 40,000 bases.

9
500/3 = 166.67, recalling that there are three bases in each codon.



1.6

12 Setting the Biological Scene

e The DNA stored in these vectors are sequenced in sections of around 500
bases at a time and then re-assembled. This is accomplished by the use of
the di-deoxy chain termination sequencing method, as described above.

There are differences in the methods employed here, particularly the type and
size of vectors used and the strategy used for their selection. All these factors
influence the re-assembly process and the coverage of the resultant sequence,
which may contain large ‘“gaps” that need filling. Determining the first example
genome for an organism is the hard part. After that, it is relatively easy to
re-sequence the parts of the organism that different research projects find
interesting, even if these “interesting parts” tend to be a tiny fraction of the
whole genome. So, a genome is the complete DNA content of a cell that codes
from an organism. As an indication of the relative sizes involved in sequencing
a protein, consider that a human cell contains about two billion bases, while the
Escherichia coli bacterium has approximately four million. Viruses tend to have a
few tens of thousands.

The Example DNA-gene-protein System We Will Use

Throughout Bioinformatics, Biocomputing and Perl, a relatively ‘“nice” example of
DNA and protein sequences is used to explain the basic concepts of sequence
analysis. The DNA-gene-protein system we will use is the Mer Operon. This is a
set of genes often found in bacteria that are important for the detoxification of
mercury by the conversion of Hg?" ions to the less toxic Hg metal.

The system has been well characterised and the following genes have been
identified in it (refer to Figure 1.7 on page 13):

e MerA is mercury reductase (Enzyme Classification Number: 1.16.1.1). This
is the protein that uses NADPH to reduce Hg?t (mercury) ions.

e MerR is the regulator protein that represses the production of the Mer
proteins. When Hg?* ion binds to this protein, the transcription of the other
Mer genes is stimulated.

e MerP, MerT and MerC are membrane-associated proteins that sequester free
Hg?t ions until they can be detoxified by MerA.

e MerB is the protein organomercurial lyase (Enzyme Classification Number:
4.99.1.2). This cleaves the carbon-mercury bond formed in other structures
releasing Hg?* ions for detoxification.

The specific examples used are from the bacteria Serratia Marcescens, and
their DNA sequences span the two EMBL database entries, M15049 and M24940.
Although these entries contain most of the genes that have been identified in the



The example DNA-gene-protein system we will use 13

M24940
1111 1533 1824 2923
# MerR H MerT | MerP H MerA
677 1183 1549 1896

DNA Base Index
[ | 500 L1000 L1500 12000 12200
I 1 1 1 1 1

M15049

359 1012 1489 2153

1 MerA | MerB H MerD |_
1 374 1124

Figure 1.7 The Mer Operon example DNA -gene-protein.

Mer Operon, some are still absent. However, the MerA and MerT genes that form
the “core” of the system are always present. Refer to the following web-site for
more information on Mer Operon:

http://www.uga.edu/cms/FacA0S.html

As stated earlier, an advantage to studying this system is that it has been so well
characterised. So, after a particular analysis is complete, it is possible to look
up the “right answer” and compare it with what was found as the result of the
analysis. If the two results are similar, then the assumption is that the analysis
worked.

Where to from Here

This chapter sets the scene for this book from a biological perspective. In the next
chapter, the scene is set again, this time from a technological perspective.



2.1

2

Setting the
Technological Scene

Perl’s relationship to operating systems and applications.

The Layers of Technology

An objective of this book is to enable the reader to acquire an understanding
of, and ability in, the Perl programming language as the main enabler in the
development of bespoke computer programs for use in the area of Bioinformatics.
As a prelude, let’s set the technology scene.

Modern computers are organised around two main components: hardware
and software. The hardware is the stuff that can be seen and touched: screens,
keyboards, printers, mice, and so on. Hardware also includes network connec-
tions, hard disks and ZIP drives. In order to use hardware, technology is required
to drive it. This is the role of software. Without software, hardware is all but
useless.

Software is typically categorised by type. It is useful to think of the types of
software as being organised into technology layers (see Figure 2.1 on page 16).

The category of software that is closest to the hardware is the operating
system. This interacts directly with the hardware and is responsible for ensuring
the efficient and equitable use of all hardware resources available. Example
operating systems, of which there are many, include Linux, UNIX, Windows, Mac

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 0 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X



2.1.1

16 Setting the Technological Scene

Applications

Tools

Operating system

Hardware

Network| | Printer | |Keyboard| | Screen | | Mouse

Figure 2.1 The layers of technology.

0OS X, MS-DOS and VMS. Like hardware, operating systems on their own are not
very useful.

Another category of software, known as tools, takes advantage of what the
operating system has to offer, enabling a set of services to be made avail-
able to application builders, that is, programmers. The tools category includes
programming languages, databases, editors and interface builders. So Perl is,
first and foremost, a software tool. Tools provide an environment within which
applications can be created and deployed.

Applications are, by far, the most useful category of software. The application
layer also has the largest diversity, and includes software such as web browsers,
e-mail clients, web servers, word processors, spreadsheets and so on. It is this
layer that users interact with to get their work done.

The overall process is that applications are built with tools that use the services
provided by the operating system, which in turn interacts with the hardware.

From passive user to active developer

Since it is often the case that pre-existing applications do not provide a sufficiently
specific solution to a user’s needs, there continues to be a need to develop
bespoke computer programs tailored to meet the particular, and sometimes
unique, requirements identified in the user environment. The emphasis in this
book is on acquiring an understanding of, and ability in, the Perl programming
language.

By the end of Bioinformatics, Biocomputing and Perl, the reader will no longer
be a passive user who simply clicks web-page links and selects an option from a
menu, but will instead be an active developer, capable of building web-pages and
bespoke computer programs.



2.2

2.2.1

Finding per]1 17

Finding perl

As mentioned in the Preface, this book assumes that the Linux operating system
is being used. If so, the Perl programming language and its environment should
already be installed. A method of confirming this is detailed below. If Linux is not
running, don’t worry: the vast majority of the program code in this book should
work on any version of perl, regardless of the operating system used. Please
refer to the Installing Perl appendix on page 453 for instructions on installing
Perl onto any one of a variety of operating systems.

Checking for perl

On Linux, check if something is installed by using the whereis command. Take
care to use the correct case since Linux operating systems are case-sensitive
(generally system tool names such as whereis are all lower case, as here, but not
always):

whereis perl

When the above command is executed on Paul’s computer (which is running a
recent version of RedHat Linux)!, the results are:

perl: /usr/bin/perl /usr/share/man/manl/perl.1l.gz

This confirms that “per1” is in the /usr/bin/ directory location, and there is
also “perl.1.9z” in the /usr/share/man/manl/ directory location. The former
is the actual per1 program, the latter is part of the Perl documentation?.
Another Linux command, which, reports on the version of perl that executes
when the perT program is invoked. Again, using Paul’s computer, this command:

which perl
produces this result:

/usr/bin/perl

1Michael’s computer, which is running SuSE Linux, also reports this directory location for
perl. Other computers may report /usr/bin/per15.00503 as the location for perl, which
looks a little strange. This is an older version of per1, which will run most of the Perl in this
book, except for those programs that require the installation of some very specific modules.

2
This sentence serves to illustrate a convention in the Perl programming community: when
referring to the tool that executes a Perl program, we refer to it as “perl”, whereas the
programming language itself is referred to as “Perl”.



18 Setting the Technological Scene

The actual location of the perl program is confirmed to be the /usr/bin/
directory location. Note that it is possible to have more than one per1 installed
on a computer, so the whereis command may report more than one directory
location. The which command confirms which of the alternatives is actually
executed. Note that another very popular directory location for per1 is:

/usr/local/bin/perl

Now, make a note of the perl directory location reported by your computer, as
this information is needed in the next chapter.

Where to from Here

Having lulled the reader into a rather comforting, but false, sense of security
with this less-than-demanding technical chapter, the next chapter introduces the
more taxing subject of the basics of programming, Perl style. It is time to get
your hands dirty.



Part I

Working with Perl

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 0 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X



3.1

3

The Basics

Getting started with Perl for Bioinformatics programming.

Let’s Get Started!

There is no substitute for practical experience when first learning how to program.
So, here is our first Perl program, called we1come:

print "Welcome to the Wonderful World of Bioinformatics!\n";

When executed by per1!, this small program displays the following, perhaps
rather not unexpected, message on screen:

Welcome to the Wonderful World of Bioinformatics!

This program could not be easier. A single Perl command, print in this program,
tells perl to display on screen the phrase found within the double-quotes. Use
any text editor to create the welcome disk-file on a computer (it is required in the
next section). Now, let’s look at another way to write welcome:

print "Welcome ";

print "to ";
print "the ";

print "Wonderful ";
print "World ";

print "of ";

print "Bioinformatics!";
print "\n";

1 . o
We will learn how to do this is in just a moment.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 0 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X



3.1.1

22 The Basics

This considerably longer program, called welcome2, displays exactly the same
message as our first Perl program. Rather than displaying the phrase as a whole,
as was the case with welcome, this program displays each word from the phrase
individually, that is, with its own print command. Of note is the last print
command, which displays \n. Just what exactly is \n? It's how to tell perl to
display, or take, a new line.

These two programs serve to illustrate and highlight our first programming
maxim?.

Maxim 3.1 Programs execute in sequential order.

The welcome2 program displays the word “Wonderful” before displaying the
word “Wor1d”. That is, the print commands are executed in sequence, one after
the other.

Technical Commentary: Within Perl, and almost all other programming languages,
each line in a program is referred to as a “statement”. Perl statements end with, and

are separated from any other statements by, a semicolon, that is, the ““;” character.
Here’s another programming maxim highlighted by these two programs.
Maxim 3.2 Less is better.

As far as these programs are concerned, the smaller of the two, welcome, is the
better of the two. By giving each word in the phrase its own print command,
the welcome?2 program is more complex than it needs to be. It is also harder to
understand. This is in spite of the fact that it is functionally identical to welcome.
Adding complexity to programs for no benefit is a practice to be avoided. Put
another way, the second maxim could be rewritten as follows.

Maxim 3.3 If' you can say something with fewer words, then do so.

Running Perl programs

Prior to actually running a program, it is prudent to first check Perl programs
for obvious errors. To do this for welcome, type the following at the Linux
command-line (where the -c stands for “check”):

perl -c welcome
If all is well, per1 responds with:

welcome syntax OK

2 L
A maxim is a general truth or a rule of thumb expressed as a sentence.



3.1.2

Let’s Get Started! 23

Let’s assume that the welcome program contains an error, specifically that the
word “print” is entered as “pint”. When the syntax-checking command-line is
entered, the following messages appear:

String found where operator expected at welcome line 3,
near "pint "Welcome to the Wonderful World of Bioinformatics!\n
(Do you need to predeclare pint?)
syntax error at welcome line 3,
near "pint "Welcome to the Wonderful World of Bioinformatics!\n""
welcome had compilation errors.

nn

When messages such as this appear, don’t panic! This is per1’s way of indicating
that there is something wrong with the program. Look at the messages and the
program again and check the spaces, as quotation marks and semicolons are
most likely to get left out or misplaced. Commands can also be misspelt, as is
the case here, resulting in a syntax error. Now, just what exactly is “syntax”, and
why is it OK or in error?

In any written language, syntax refers to the way words are arranged to form
phrases and sentences. When referring to computer programs in any program-
ming language, syntax refers to the arrangement of program statements. Specifi-
cally, the arrangement of statements as defined by the programming language’s
rules and regulations is known as its syntax.

So, the perl program is happy that the welcome program contains only
legitimate Perl statements, and that no syntax rules have been violated.

Syntax and semantics

It is important to understand that a Perl program may be syntactically correct,
but semantically wrong. Semantics has to do with the meaning of language. For
a Perl program to be syntactically correct but semantically wrong means that the
program satisfies the rules and regulations of the programming language, but
does not do what you expected it to do.

For example, here is a syntactically correct but semantically wrong Perl pro-
gram, called whoops:

print ; "Welcome to the Wonderful World of Bioinformatics!\n";

When “perl -c whoops” is executed, the familiar “whoops syntax OK” mes-
sage appears. So syntactically, everything is OK. However, try executing this
command-line, which actually runs the program (note: the -c is missing):

per1l whoops

And nothing appears on screen. Oh dear.
The whoops program is semantically incorrect, in that it does not do what
we were expecting it to do. In fact, it does nothing. The problem is that the



24 The Basics

print command has been terminated too early. Look at that “;” character right
after the word print in the program. What that tells perT is that the print
command has finished printing. As print has nothing to print, nothing displays
on screen! And as the program has not told per1 what to do with the friendly
message, per1 does nothing with it. Which is probably the safest thing for the
program to do.

Surely, perl1 should spot that something is not quite right here? The fact that
perl sees the message and then decides not to do anything with it should mean
something and - if nothing else - should be reported to the programmer.

You are right, it should. But, as programs go, perl is the strong, silent type.
The problem is that perl has not been asked to highlight anything out of
the ordinary. All that was required was a syntax check. In contrast, this next
command-line instructs perl to report potential problems (where -w stands for
“warnings”’):

perl -c -w whoops

Now, in addition to performing a syntax check (with -c), we have asked per1 to
look for and report on anything else that might be strange. Here’s what per1 has
to say about whoops now:

Useless use of a constant in void context at whoops line 1.
whoops syntax OK

The perl program informs the programmer that a “useless use” of something
has occurred. In this case, it is the friendly message that is of no use. Note that
the syntax is still OK, but the warning message is a clue to look at the program
for possible semantic errors.

Technical Commentary: Programmers often refer to semantic errors by another
name: logic errors.

In learning about syntax and semantics, we rather sneakily demonstrated just
how easy it is to execute any Perl program: simply invoke per1 without the -c
switch, as follows:

perl welcome

This command-line produces this rather triumphant output, which is repeated
from the start of this chapter:

Welcome to the Wonderful World of Bioinformatics!



3.1.3

Let’s Get Started! 25

Program: run thyself!

It is possible, on computers running Linux and other UNIX-like operating sys-
tems, to arrange for a program to automatically invoke per1 when necessary.
Look at this command-line3, which is executed against the soon-to-be-discussed
welcome3:

chmod u+x welcome3

This chmod command tells Linux that the welcome3 program can be executed,
and it assumes that the following line* appears as the first line of welcome3:

#! /usr/bin/perl -w

The welcome3 program can now be invoked like this, in which the leading ./
tells the Linux operating system to find the welcome3 program in the current
directory:

./welcome3

But it is perfectly OK to still invoke the program like this:

perl welcome3

Both techniques are valid and either may be used. Try them for yourself. This
leads in rather nicely to the next maxim.

Maxim 3.4 There’s more than one way to do it.

This is also the Perl programming language’s motto. It is actually more of a philos-
ophy. The central idea being that whatever works for the Perl programmer works
for Perl, assuming - of course - it is legitimate Perl. There are many references to
this maxim throughout Bioinformatics, Biocomputing and Perl

Technical Commentary: The Linux chmod command changes the mode of a disk-
file. Typically, a disk-file is not created as a program, but rather as an ordinary
disk-file that can be read from or written to. When the mode of the disk-file is
changed to executable, the disk-file is turned into something that can be executed
from the command-line. That is the purpose of ‘“chmod u+x”. The “u” refers to
the user (or owner) of the disk-file, and the “+x” turns on the disk-file’s ability to
execute.

3 . . .
As the welcome2 program is essentially the same program as welcome, we have nothing
further to do with it at this stage. That said, it does make a short comeback later in this chapter
when used with another example program.

4 . . . .
As discussed at the end of the previous chapter, this may not be where your perl is, so be
sure to substitute the correct location here.



3.2

3.2.1

26 The Basics

Iteration

In the previous section, in addition to learning how to syntax check and execute
programs, the concept that programs are a sequence of statements was also
introduced?®. If all that could be accomplished by a program was to execute a
simple sequence of statements, the vast majority of programs would not be very
useful. So, programming languages support additional mechanisms, known as
programming constructs, to do more interesting things. One such mechanism is
called iteration, which is just another word for repetition. Here is an example of
an iteration from the non-programming world:

Heat the pie in the oven until the sugar glazes.

We do something, that is, heat the pie, until something is true, that is, the sugar
glazes. Another way of expressing this iteration is:

While the sugar is still sugar, heat the pie in the oven.
or:
While the sugar is not glazed, heat the pie in the oven.

These latter iterations are less intuitive when compared to the first, mainly
because the test to see if something is true occurs first, that is, check the state of
the sugar, before the something to do, that is, heat the pie. The second “while”
iteration is the least intuitive, as the check is for a negative, that is, the sugar is
not glazed and, as a result of this check being true, that is, a positive, the pie
continues to heat.

Compared to the original iteration, which used “until”, the two “while” itera-
tions seem to have things the wrong way around. It is more natural to say “T'll
stand by the fire until I warm up”’, as opposed to “While I'm cold, I'll stand by the
fire”, or the truly awful “While I'm not hot, I'll stand by the fire”.

Unfortunately, programming languages favour the use of iterations based on
the use of “while”. Although it is possible to write iterations using ‘“until”, such
usage tends to be less common in practice.

Using the Perl while construct

A quick example illustrates the use of the while construct in Perl. This next
program is called forever:

5 . . . L. .
Note that this sequence is a very different sequence to the Bioinformatics sequences we
encounter later in this book. Here, “sequence” simply means “one after the other”.



#! /usr/bin/perl -w

# The ’forever’ program - a (Perl) program,

# which does not stop until someone presses Ctrl1-C.

use constant TRUE
use constant FALSE

while ( TRUE )

{

print "Welcome to the Wonderful World of Bioinformatics!\n";

sleep 1;

= 1;
= 0;

Iteration

27

Using the chmod command from earlier, make forever executable and execute it

as follows:

chmod

u+X

./forever

forever

The screen should start to fill with copies of the message, and the program keeps
printing the message once every second until Ctr1-Cis pressed. Think of Ctr1-C
as meaning “cancel”. Press and hold down the Ctr1 key on your keyboard, then
tap the C key to stop the program:

Welcome
Welcome
Welcome
Welcome
Welcome
Welcome
Welcome
Welcome
Welcome

to
to
to
to
to
to
to
to
to

the
the
the
the
the
the
the
the
the

Wonderful
Wonderful
Wonderful
Wonderful
Wonderful
Wonderful
Wonderful
Wonderful
Wonderful

World
World
World
World
World
World
World
World
World

of
of
of
of
of
of
of
of
of

Bioinformatics!
Bioinformatics!
Bioinformatics!
Bioinformatics!
Bioinformatics!
Bioinformatics!
Bioinformatics!
Bioinformatics!
Bioinformatics!

The forever program repeatedly prints the message on screen, and it continues
to print the message while TRUE is true. So the program runs forever. The Ctr1-C
key combination must be pressed to stop the program executing.

Technical Commentary: Rather than use the word iteration or repetition to refer to
this mechanism, many programmers favour the use of the word loop. In this context,
loop is both a noun and a verb. Typical programmer utterances might be “the loop
prints the message five times” or “this program loops forever”. Programs that loop
forever, just like the forever program in this section, are referred to as an infinite
loop. The infinite loop is generally regarded as a very bad thing, and programmers

are encouraged not to introduce such loops into programs.



28 The Basics

There is a lot going on in the forever program and we are introducing a number
of new concepts, so let’s look at forever in more detail.

The first three lines of the program all start with the # character. The first
line is the run thyself! line from the last section. The other two require further
explanation:

#! /usr/bin/perl -w

# The ’forever’ program - a (Perl) program,
# which does not stop until someone presses Ctrl1-C.

In Perl, the # character denotes the start of a comment that runs from the #
character to the end of the current line. A comment is targeted at the person
reading the program, not perl. This means that perl ignores lines that start
with #.

Technical Commentary: Actually, the # character can appear anywhere on the line,
not just at the start. When per1 encounters the # character, everything from the #
character to the end of the current line is ignored by per1.

Good programmers always add comments to their programs. In effect, comments
help document the program and, in doing so, facilitate the application of future
changes to a program, especially when the programmer making the changes is
not the original author. Time for another maxim.

Maxim 3.5 Add comments to make future maintenance
of a program easier
for other programmers and for you.

Having said that, the program code that appears throughout Bioinformatics,
Biocomputing and Perl is notable in that it is devoid of comments. This is
deliberate, as the book is itself a comment on the program code. Two constant
definitions come after the comment lines:

use constant TRUE = 1;
use constant FALSE => 0;

Unlike other programming languages, Perl has a rather strange notion of what
is true and what is false. To keep things simple, for now, note that Perl treats a
value of 1 as true and a value of 0 as false. Since it is not desirable for the values
of true and false to change within a program, it is prudent to take advantage of
Perl’s mechanism to define these two values as constants. A constant is a value
that cannot change while a program is running. If we try to change a constant
value by, for instance, trying to add 1 to the value chosen to represent false, the
per] program complains loudly and refuses to process the program further.



Iteration 29

Rather than using 1 and 0 as true and false, we give the constants nice,
human-friendly names: TRUE and FALSE. It is a convention to give constants all
UPPERCASE names, although the use of UPPERCASE is not required. However,
when programming, it is always advisable to follow existing conventions.

Technical Commentary: Perl is case-sensitive. This means that when naming
variables in Perl, case is significant. So, “TRUE” is a different symbol to “true”.
Other programming languages - notably Pascal - are not as fussy.

Having declared the truth values to be constants, the program uses the value for
true in the very next line:

while ( TRUE )

Which is much easier to read and understand than this:
while (1)

Isn’t it? Even though we are yet to describe this line in detail, “while ( TRUE )”
should mean more than “while ( 1 )”. Could we possibly use this program to
demonstrate another maxim? Yes, we can.

Maxim 3.6 When using constant values, refer to them with a nice,
human-friendly name as opposed to the actual value.

This practice has a very important implication. To understand the implication,
imagine writing a program that is 3000 lines long. Throughout the program TRUE
has been used extensively, appearing in 42 different places in the program. Next,
imagine that throughout the program, TRUE has been used, in error, for FALSE.
Changing all 42 occurrences of TRUE is as easy as instructing an editor to execute
a global search-and-replace, changing all occurrences of TRUE to FALSE.

Now imagine that 1 has been used as the value for true. Now there is a problem.
A global search-and-replace cannot be used to change all the occurrences of 1 to
0, since 1 may not have been used to mean true at every point in the program that
1 appears. For instance, 1 might be added to some other value in the program
to increment its value, and if this occurrence of 1 is changed to 0, the increment
will no longer work, since adding zero to some value does not change the value.
The program will be syntactically correct but semantically wrong, and all because
constants were not used when it was appropriate to do so. The conclusion is
clear: use constants!

To return to the “while ( TRUE )” line from forever, an iteration is started
that will run for as long as TRUE is true. In other words, the iteration runs forever.

In Perl, the while construct encloses a collection of lines to repeat within a
block. A block in Perl is any collection of program statements enclosed in curly
braces, which are also known as squigglies. The start of the block is marked by



3.3

30 The Basics

the “{” character and the end of the block is marked by the “}” character. Here’s
the block associated with the whiTe statement from forever:

{
print "Welcome to the Wonderful World of Bioinformatics!\n";
sleep 1;

}

This block contains two program statements; one is the familiar print command
that displays the message, and the other is an invocation of Perl’s sleep com-
mand, which pauses the program for the indicated number of seconds, which, in
this case, is 1. So, the forever program prints the message every second, and
keeps printing the message every second until Ctr1-C is pressed.

Think of blocks as a way of grouping program statements together, allowing
them to be treated (and repeated) as a single entity.

Maxim 3.7 Use blocks to group program statements together.

To hammer home the point recommending the use of constants for the truth
values, note that the length of time to sleep for has the same value as TRUE, that
is, 1. However, its meaning is very different. We are asking perl1 to “sleep for
one second”, not to “sleep true”, the latter being another example of syntactic
correctness, but incorrect semantics.

More Iterations

Iterating forever is occasionally useful. However, it is more common for iterations
to execute for a specific number of occurrences. The loop in the forever program
kept going while the value of TRUE remained true, which meant that forever was
designed never to stop®. The thing to check at the top of the loop has a generic
name: condition. The general form of a while loop in Perl is:

while ( some condition is true )

{

do something

Note that as this isn’t actual Perl code, it is not shown in the usual program
font.

We enclose the something to do in a block enclosed in curly braces. Note that
the condition is itself enclosed in parentheses, the “(” and “)” characters. Just

6
Of its own accord, that is. Remember: we were able to stop it by pressing Ctr1-C.



3.3.1

More Iterations 31

as curly braces are required around a block, parentheses are required around a
condition. But just what is a condition?

The short answer is anything that can result in a value of true or false. This is
an answer worthy of another maxim.

Maxim 3.8 A condition can result in a value of true or false.

The longer answer is a little more complicated. It is complicated by the fact
that conditions can themselves be complicated, of which more later. However,
before starting to use and learn about more complex conditions, we first need to
introduce variable containers.

Introducing variable containers

Earlier in this chapter, constants were described. To recap, a constant is a con-
tainer within a program whose value cannot be changed under any circumstance.
The opposite of a constant is a variable container, or variable for short. A
variable’s value can change over the lifetime of the program. In other words, a
variable’s value can vary.

Maxim 3.9 When you need to change the value of an item,
use a variable container.

For instance, it might be a requirement to repeat a loop ten times. A count is
kept of the number of iterations. When the count reaches ten, the loops ends and
stops iterating. To do this, use a variable.

Perl, probably more than any other programming language, has excellent sup-
port for all types of variable containers. The simplest type of variable container is
the scalar. In Perl, scalars can hold, for example, a number, a word, a sentence or
a disk-file. Within Perl programs, scalars are given a name prefixed with a dollar
sign ($). Here are some example scalar names:

$name

$_address
$programming_101
$z

$abc

$count

Scalar variable container names always start with the dollar sign ($) followed by
at least one other character, as long as that character is a lowercase letter (a - z),
an uppercase letter (A - Z) or an underscore (_).

Look at the list of six example scalar names. They all are correctly formed.
However, they are not all equally descriptive of the contents of the variable.
Simply by looking at them, a reasonably good idea of what $name, $_address
and $count will be used for can be formed. Equally, an assumption can be made



3.3.2

32 The Basics

about what the $programming 101 scalar is being used for. But not so with $z
and $abc.

Without examining the program within which $z appears, it is impossible to
determine what the variable is being used for, and reading the program within
which $z appears may not help at all. Using a single letter for a variable name
is rarely justified, as a single letter is not enough to convey any sort of meaning.
Even though more than a single letter has been used to name $abc, this is also a
poor choice of name. Both $z and $abc highlight a key maxim.

Maxim 3.10 Don'’t be lazy: use good, descriptive names for variables.

Variable containers and loops

To demonstrate the use of variable containers within loops, a version of forever
that displays ten messages and then stops can be created. This new program is
called tentimes, and here it is:

#! /usr/bin/perl -w

# The ’tentimes’ program - a (Perl) program,
# which stops after ten qiterations.

use constant HOWMANY => 10;
$count = 0;

while ( $count < HOWMANY )

{
print "Welcome to the Wonderful World of Bioinformatics!\n";
$count++;

}

To run this program, use the now familiar chmod command to make it executable,
then invoke it as follows:

chmod u+x tentimes
./tentimes

This program displays the following on screen:

Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!



More Iterations 33

Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!

The tentimes program is not very different from the forever program. The
usual first line is followed by two lines of comment. A constant is then defined:

use constant HOWMANY => 10;

The HOWMANY constant is used to control the number of times the loop iterates.
Once the program has displayed the message HOWMANY times, it stops. A scalar
variable container called $count is used to count how many times the loop
iterates. Before starting the loop, the $count scalar is given a value of zero:

$count = 0;

Read this line as “set the $count scalar to equal zero” or “$count becomes equal
to zero”. The = symbol is referred to as the assignment operator.

Technical Commentary: In Perl, it is not necessary to set the value of a variable
container before it's used. Perl has a number of rules that are applied to the first
usage of a variable container, and per1 sets a scalar to zero if it is first used within
a numeric context. This feature can be very convenient. However, it is always a good
idea to give variable containers an explicit starting value, as it indicates precisely
what the intentions for the variable are. Any programmer reading the tentimes
program should be in no doubt that the $count scalar is to be used within a numeric
context (not that the use of the word “count” wasn’t a big enough clue already).

With the $count scalar set and the HOWMANY constant defined, the condition for
the loop can now be written:

while ( $count < HOWMANY )

The loop continues to iterate while the value of $count is less than the value of
HOWMANY. Note the use of the standard symbol (borrowed from Mathematics) for
less than, namely, <.

Technical Commentary: The use of such symbols is common to all programming
languages, not just Perl. Rather than refer to them as symbols, programming lan-
guages use the word operator. Throughout this part of Bioinformatics, Biocomputing
and Perl, a number of operators are used accompanied by appropriate explana-
tion. For a review of the list of operators supported by Perl, see Appendix A: Perl
Operators on page 457.

The block executed by the loop comes next:

{
print "Welcome to the Wonderful World of Bioinformatics!\n";
$count++;



3.4

34 The Basics

The block contains two program statements. The first displays the usual message.
The other applies the ++ operator to the $count scalar. This operator is the
increment operator, and when used, adds 1 to the value of a numeric scalar. As
$count started out with a value of zero, this statement sets its value to 1. The
next time the loop iterates, $count will have the value 2, and so on.

So, as the loop iterates, the message displays and the value for $count increases
until it reaches the value of 10. At this point, the value of $count is no longer
less than the value of HOWMANY, and the loop then ends, as does the program.

By employing the services of a simple scalar variable container and two oper-
ators (< and ++), a loop has been written that iterates a specified number of
times.

Selection

The third basic building block of programming is selection. The use of a selection
mechanism allows a program to choose one of a number of possible courses of
action. Here’s a simple selection from the real world:

I'll eat if I'm hungry, otherwise, if I'm not hungry, I'll sleep.
Another way of saying this would be:
If 'm hungry, I'll eat, otherwise I'll sleep.

And here’s the general form of the selection statement in Perl:

if ( some condition is true )
{

do something

}

else
{
do something else

}

The first point to note is that the else part of the selection is entirely optional.
As expected, the else block is only executed if the condition fails. The 1if block
is executed if the condition is true. Note that, as with loops, blocks of program
statements are associated with each part of the selection.

The use of a condition is central to the workings of the selection mechanism,
just as it is with loops. If the condition is true, the first block of program
statements is executed. If the condition is false, the second block of program
statements executes.



Selection 35

3.4.1 Using the Perl if construct

Here is another variation on the forever program that prints the message five
times. This program is called fivetimes:

#! /usr/bin/perl -w

# The ’fivetimes’ program - a (Perl) program,
# which stops after five iterations.

use constant TRUE = 1;
use constant FALSE => 0;
use constant HOWMANY => 5;
$count = 0;

while ( TRUE )

{
$count++;
print "Welcome to the Wonderful World of Bioinformatics!\n";
if ( $count == HOWMANY )
{
last;
}
}

The first three lines are as expected: the standard first line followed by two
comment lines. Then come three constant definitions that require no explanation
as they have been seen before. As in the tentimes program, the $count scalar is
initially set to zero. The loop then begins:

while ( TRUE )
{

$count++;
print "Welcome to the Wonderful World of Bioinformatics!\n";

Note that the loop condition is simply TRUE, which is defined as a constant value
of 1. The value of 1 represents a true value in Perl, which results in this block
looping forever. As in the tentimes program, the first two program statements in
the block increment $count and display the message. Then comes the selection:

if ( $count == HOWMANY )
{

}

last;



3.5

36 The Basics

The 1if selection statement uses the numeric equality operator (==) to check if
the value of $count is equal to the value of the HOWMANY constant. If it is not
equal, that is, if the condition fails, the block associated with the if statement
is not executed, which results in another iteration beginning. If $count is equal
to HOWMANY, the block associated with the if statement is executed. This block
contains a single Perl command, Tast, which forces per1 to exit from the current
loop regardless of whether or not the loops condition is true or false. In effect,
the Tast command is a loop short-circuit, and its use here ensures that the
fivetimes program stops after five iterations.

If you are wondering which “stop the loop” technique is the best to use, either
(a), the iteration condition test from tentimes or (b), the selection condition
test combined with the Tast command from fivetimes, the maxim on page 25
provides the answer.

There Really is MTOWTDI

Where MTOWTDI stands for “more than one way to do it”. This philosophy is
one of the great strengths of Perl, but care is needed. Let’s illustrate the good
and the bad of this philosophy, by example, starting with a couple of not so good
examples followed by a couple of much improved ones. Here’s another example
program, called oddeven:

#! /usr/bin/perl -w

# The ’oddeven’ program - a (Perl) program,

# which iterates four times, printing ’'odd’ when $count
# is an odd number, and ’even’ when $count is an even

# number.

use constant HOWMANY => 4;

$count = 0;

while ( $count < HOWMANY )

{
$count++;
if ( $count == 1)
{
print "odd\n";
3
elsif ( $count == 2 )
{
print "even\n";
}
elsif ( $count == 3 )
{

print "odd\n";



There Really is MTOWTDI 37

}
else # at this point $count is four.
{
print "even\n";
}

The comments at the top of the program explain its purpose. The program
iterates, and as it iterates it examines the value of the $count scalar. When
$count is an odd number, the word “odd” displays on screen. When $count is
an even number, the word “even” displays on screen.

Of note is that the if selection statement is a multi-way selection. It has four
blocks, with one of the blocks executing when the value of $countis 1, 2, 3 or
4. When $count has a value of 2 or 3, the blocks associated with Perl’s elsif
are executed’. The trailing e1se block does not have a condition associated with
it, as it assumes that $count is not 1, 2 or 3, so it must be 4. Note the use of a
comment to document this assumption.

This long if statement also highlights another property of this selection
mechanism, that only one block is executed on each iteration. The value of the
$count scalar controls which block is executed.

Use chmod to turn the oddeven program into a file that can be executed, then
invoke it with the “. /oddeven” command-line. As expected, the program displays
the following on screen:

odd
even
odd
even

Whew! We can all sleep tonight: the oddeven program has confirmed that 1 and
3 are odd numbers, and 2 and 4 are even numbers.

Now, let’s look at another program that does exactly the same thing as oddeven.
This program is called terrible:

#! /usr/bin/perl -w

# The ’terrible’ program - a poorly formatted ’oddeven’.

use constant HOWMANY => 4; $count = 0;

while ( $count < HOWMANY ) { $count++;

if ( $count == 1 ) { print "odd\n"; } elsif ( $count == 2 )
{ print "even\n"; } elsif ( $count == 3 ) { print "odd\n"; }
else # at this point $count 1is four.

{ print "even\n"; } }

7
Note the strange spelling. Other programming languages use elseif or else if, which are
both illegal syntax as far as Perl is concerned.



38 The Basics

Yikes! What a mess. Look closely. Notice that the program statements that make
up the terrible program are exactly the same as those that make up the
oddeven program. The results produced from terrible are exactly the same as
those produced by oddeven, namely:

odd
even
odd
even

The difference between the two programs has to do with how they are laid out,
or formatted. The oddeven program uses plenty of whitespace, blank lines and
indentation to present the program statements in such a way that they are easy
for another programmer, and you, to read. The use of indentation helps the
reader of oddeven see which blocks of code are associated with which condition
tests. The terrible program, on the other hand, squeezes as much as possible
onto as few lines as possible. It is just about readable, but it is all but impossible
to see which blocks are associated with which condition tests, let alone work out
what the program actually does.

Technical Commentary: Like a lot of modern programming languages, Perl is
classified as free format. This means that you can write a program using whatever
formatting you prefer, as per1 can just as easily process a well-formatted program,
such as oddeven, as it can a poorly formatted program, such as terrible. Do
yourself and everyone else a favour, and be sure to format your programs to be as
readable as possible.

It is time for a new maxim, as it has been quite a while since the last one.

Maxim 3.11 Use plenty of whitespace, blank lines and indentation
to make your programs easier to read.

Do not be misled into thinking that comments are central to the future under-
standing of a program, as suggested by an earlier maxim. Certainly, comments
are important, but all the comments in the world will not make up for improperly
formatted and poorly laid out code. Take another quick look at the terrible
program. It really is a mess.

Now for the good. Here is another version of oddeven. This program is
called oddeven2 and it produces exactly the same output as both oddeven
and terrible:

#! /usr/bin/perl -w
# The ’oddeven2’ program - another version of ’oddeven’.
use constant HOWMANY => 4;

$count = 0;



There Really is MTOWTDI 39

while ( $count < HOWMANY )

{
$count++;
if ( $count % 2 == 0 )
{
print "even\n";
}
else # $count % 2 is not zero.
{
print "odd\n";
}
}

The key program statements are these:

if ( $count % 2 == 0 )

{
print "even\n";
}
else # $count % 2 is not zero.
{
print "odd\n";
}

That percentage sign (%) is another Perl operator, the modulus, % operator. Given
two numbers, “A % B” returns the remainder after A has been divided by B,
assuming both are positive numbers.

Technical Commentary: The use of the word “return” in the last paragraph
requires further explanation. When programmers state that some program state-
ment “returns” some value, they mean that the program statement produces some
result that then becomes available to the program. That is, the program statement
actually has a value associated with it. In the examples that follow, each statement
results in the remainder being “returned” to the program, which then prints the
resulting value, that is, the value of the remainder after the modulus operator has
executed.

Here are some examples of the modulus operator in action:

print 5 % 2, "\n"; # prints a ’1’ on a Tine.
print 4 % 2, "\n"; # prints a ’0’ on a Tine.
print 7 % 4, "\n"; # prints a 3’ on a line.

The key point is that an odd number divided by 2 yields a remainder of 1, whereas
an even number divided by 2 yields a remainder of 0.

The oddeven2 program exploits this mathematical property, thanks to Perl’s
modulus operator and the $count scalar. When “$count % 2" yields zero, the
word “even” is printed, and when “$count % 2” yields anything other than zero,
the word “odd” is printed.



40 The Basics

The oddeven?2 program is shorter than oddeven. But is this enough to make it
better? On its own, it is not. However, the oddeven2 program is better because
it is easier to extend. Specifically, if the program is changed to iterate 20 times,
we need only make one change: the value for HOWMANY becomes 20 instead of 4.
Contrast this to the changes required to the oddeven program: adding 16 new
els1if blocks for each of the new values of $count, 4 through 19. This is probably
too much work to be worth the effort. However, the change to oddeven? is trivial,
which is an excellent example of taking the maxims to heart. And we can do even
better. Take a look at this program, called oddeven3:

#! /usr/bin/perl -w

# The ’oddeven3’ program - yet another version of ’oddeven’.
use constant HOWMANY => 4;

$count = 0;

while ( $count < HOWMANY )

{
$count++;
print "even\n" if ( $count % 2 == 0 );
print "odd\n" if ( $count % 2 != 0 );
}

Let’s take a look at the print commands more closely. Here’s the first:
print "even\n" if ( $count % 2 == 0 );

Read this program statement as “print the word ‘even’ if and only if the value
of $count modulus 2 is equal to zero”. Unlike the if statements that appeared
in oddeven and oddeven2, in which the condition test comes before the block,
in oddeven3, the condition test comes after the program statement. Such an
arrangement is known as a statement qualifier in Perl. The second print statement
in the oddeven3 program is this:

print "odd\n" if ( $count % 2 !=0 );

This program statement introduces a new operator, !=, which means “not equal
to”. This statement can be read as “print the word ‘odd’ if and only if the value
of $count modulus 2 is not equal to zero”.

When the block of program statements associated with a particular i f condition
test is small (as is the case with oddeven), it is often more natural to use
a statement qualifier, specifying “print if” as opposed to “if print”. Both
work, of course.



3.6

Processing Data Files 41

Processing Data Files

The programs developed thus far have served their purpose in demonstrating the
basic programming mechanisms of sequence, iteration and selection. However,
although academically interesting, these programs have not really performed
any useful function. It is only when data from outside a program comes into
the picture that this changes. Getting data into a Perl program is surprisingly
easy.

In order to demonstrate just how easy, we need to introduce another, rather
special, Perl operator. The input operator looks like this:

<>

When perl encounters this operator within a program, it looks for and returns
a line of input from standard input. This is the name given to the mechanism
that is currently providing input data to the program. Unless perl is told
otherwise, the default input mechanism is the keyboard. This means that a
program takes a line of data from the keyboard whenever the input operator is
used.

It is useful to think of a program’s input as its data. Conversely, think of a
program’s output as its results. Consider this program statement:

$Tine = <>;

The scalar variable container, called $1ine, is assigned its value from the input
operator. In other words, a line is read from the keyboard and put into the $1ine
scalar. Here is a small program called getl1ines that exploits the above program
statement:

#! /usr/bin/perl -w
# The ’getlines’ program which processes lines.

while ( $Tine = <> )

{
}

print $line;

The first line of this program is the usual run thyself! line. A one-line comment
follows, then the remainder of the program is a loop. What is strange about this
loop is that the condition part does not result in a numeric value, unlike the other
loops seen so far in this chapter. Instead, the getlines program has a condition
part that uses <> to look for and return a line from standard input. The line, when
available, is assigned to the $11ne scalar, which is then checked for trueness. But
how can a line be checked for trueness?



42 The Basics

Earlier in this chapter, we alluded to the fact that the values for true and false
in Perl are a little strange. It turns out that, in addition to using numerics to
represent true and false, strings® also have a truth value. The rule is simple: A
string with no characters is false, otherwise it is true.

Returning to the getlines program, note that the <> operator returns a
line from standard input and assigns it to $Tine. The trueness of the $1ine
scalar is then tested. If $1ine contains one or more characters it is considered
to be true, otherwise it is considered to be false. That is, if it contains no
characters, it is an empty string, and “empty” implies false. Obviously! Remember
the earlier warning in this chapter that Perl had its own unique notion of
truth.

So, the loop in get1ines keeps iterating while there are lines of input arriving
from standard input, that is, the keyboard. The single program statement within
the loop simply displays the line on screen using Perl’s print command.

Technical Commentary: In addition to standard input, Perl has standard output,
the default place to display normal messages, and standard error, the default place
to display error messages. Unless told otherwise, per1 uses the screen as the default
for both standard output and standard error. To make things convenient, standard
input, standard output and standard error go by the shorthand names of STDIN,
STDOUT and STDERR respectively.

The now familiar command makes getlines executable:

chmod u+x getlines

Run the getlines program as follows:

./getlines

The program takes a new line, then nothing appears to happen. What is actually
happening is that getTines is waiting for some input to arrive from standard
input. Go ahead and type something at the keyboard, remembering to press the
Enter key at the end of each line typed. Immediately upon pressing Enter, the
getlines program displays what is typed on screen. It iterates for as long as
lines are typed at the keyboard, as the <> operator takes what was typed and
assigns it to the $1ine scalar, which is then checked for trueness. As long as
there is something typed, $11ine results in a true value.

To signal to the getlines program that typing is finished, press Ctr1-D.
This sends an end-of-file message to the current program. Think of Ctr1-D as
signalling “Done”.

8
Sequences of zero or more characters.



3.6.1

Processing Data Files 43

Asking getlines to do more

Type the following command-line:

./getlines terrible

And, as awful as it is, the terrible program appears on screen. Try this
command-line:

./getlines terrible welcome3

This time, not only does the terrible program appear on screen but it is also
immediately followed by the welcome3 program. In fact, it is the contents of the
disk-files that appear. The fact that these two disk-files are Perl programs is of
no consequence to the getlines program, it just sees them as a collection of
lines to display. Now, no changes have been made to the getlines program, so
how is this display of disk-files occurring? What are we not telling you?

Nothing, if truth be told. The getlines program is still reading lines from
standard input until there are no more lines to read. However, with the above
command-lines, rather than looking to the keyboard for data, the getlines
program looks to the disk-files for data. What per1 does is open the first disk-file
(terrible) and read each line from the disk-file, passing the lines one at a time
to the <> operator within the get1ines program. When the data (the lines) within
terribTle are exhausted, per1 closes the disk-file and then opens the welcome3
disk-file and reads its data one line at a time. When there are no more lines or
disk-files to process, the Ctr1-D end-of-file message is passed to getlines.

This is really cool. As the get1ines program uses standard input, it uses the
keyboard by default. When used in association with a named disk-file, it uses the
contents of the disk-file as input, and there can be more than one named disk file.

Technical Commentary: Programmers refer to the list of “things” on the command-
line that follow a program name as its command-line arguments or parameters. The
lastinvocation of get11ines has two command-line arguments, the word “terrible”
and the word “welcome3”.

As stated at the start of this section, getting data into perl is not difficult.
This is one of Perl’s main strengths - processing disk-files that contain textual
data - and it goes a long way to explaining Perl’s popularity as the programming
language of choice within the Bioinformatics community. This is no accident. Perl
is a very powerful text processor. The icing on the cake is a technology called
regular expressions, which is introduced in the next section.



3.7

44 The Basics

Introducing Patterns

As strange as this may sound, Perl has another programming language built
into it. This language within a language makes extensive use of Perl’s regular
expression, pattern-matching technology.

The Perl on-line documentation® defines a regular expression to be “simply a
string that describes a pattern”. The pattern identifies what it is hoped to match.
The actual how of finding the pattern is taken care of by the per1 program.

Technical Commentary: A programming language that allows the programmer
to specify what is required is often referred to as a declarative language. The
programmer “declares” what’s required, and the technology works out the details.
On the other hand, a programming language that allows the programmer to specify
exactly how a result is to be arrived at is often referred to as a procedural language.
The programmer defines the “procedure” to be followed, and the technology blindly
follows the instructions. Most programming languages can be classified as one or
the other, either declarative or procedural. Remarkably, Perl can be one or the other,
or both.

The definition of regular expression patterns is a complex topic, and an entire
chapter is devoted to the details later in Bioinformatics, Biocomputing and Perl.
For now, and by way of introducing regular expressions, a very simple pattern
will be used to demonstrate the potential of this programming mechanism. Take
a look at the next program, called patterns:

#! /usr/bin/perl -w
# The ’patterns’ program - introducing regular expressions.

while ( $1line = <> )

{
}

print $1line if $1ine =~ /even/;

This program is very similar to the getlines program from the last section.
Changes were made to the comment, of course, and to the print command
within the loop’s block. Let’s look at the changed print command in more detail:

print $1ine if $1ine =" /even/;

Before describing this program statement in detail, here’s the English language
equivalent: display the contents of the scalar called $11ne if and only if the scalar
called $11ine contains the pattern “even”.

Another new operator is introduced here. It is called the binding operator, and
it looks like this: =". This operator compares something (usually a scalar variable

9
See the perlretut manual page.



Introducing Patterns 45

container) against a pattern!®. For now, a pattern is defined as any sequence of
characters surrounded by the forward-leaning slash character (i.e., “/”). In the
example above, the pattern is the word “even”. Specifically, it is the letter “e”,
followed by the letter “v”, followed by the letter “e”, followed by the letter “n”.
If the contents of $1ine contains the pattern anywhere in the line, it is said to
match.

Technical Commentary: When programmers refer to a character that surrounds
something of interest, such as the forward-leaning slash surrounding the patterns in
this section, they call that character a delimiter. The character delimits the something
of interest. The *“/” character is the default delimiter for regular expression patterns
in Perl.

A few examples will illustrate what’s going on. Try this command-line:

./patterns terrible

The patterns program reads the contents of the disk-file called terrible one
line at a time looking for a match on the pattern. When the pattern is found,
patterns displays the matching line. It finds matching lines as follows:

# The ’terrible’ program - a poorly formatted ’oddeven’.
{ print "even\n"; } elsif ( $count == 3 ) { print "odd\n"; }
{ print "even\n"; } }

Here’s another invocation of patterns, this time against the oddeven disk-file:

./patterns oddeven

Again, the patterns program reads the contents of the disk-file called oddeven
one line at a time looking for a match on the pattern. When it is found, it displays
the matching line. As with the terrible disk-file, the program finds matching
lines:

# The ’oddeven’ program - a (Perl1) program,

# is an odd number, and ’even’ when $count is an even
print "even\n";
print "even\n";

Note that as the oddeven program is formatted correctly, it is easier to spot
the pattern on the displayed lines. Here is one final invocation of the patterns
program:

./patterns welcome2

1Olf you are wondering why this operator is called “bind” and not “compare”, wonder no
longer. The word “compare” was already taken, so “bind” was chosen instead. So, we refer to
a scalar binding to a pattern, as opposed to being compared to a pattern. Conceptually here,
“bind” and “compare” both mean the same thing.



46 The Basics

This invocation produces no output. This is perfectly OK, as the welcome2
program does not contain the pattern “even”.

To finish off this quickie introduction to Perl’s regular expression, pattern-
matching technology, let’s conclude with another maxim.

Maxim 3.12 Patterns tell per1 what to look for, not how to find it.

Where to from Here

In this chapter, sequence, iteration and selection and the basic building blocks of
programming, were discussed. The three C’s: constants, comments and conditions
were introduced. The use of simple variable containers helped to keep things
interesting, as did the use of some Perl operators and its pattern-matching
technology.

In the next chapter, additional variable containers are described, and additional
Perl programming constructs are introduced.

The Maxims Repeated
Here’s a list of the maxims introduced in this chapter.

e Programs execute in sequential order.

o Less is better.

e If you can say something with fewer words, then do so.
e There’s more than one way to do it.

o Add comments to make future maintenance of a program easier for other
programmers and for you.

o When using constant values, refer to them with a nice, human-friendly name
as opposed to the actual value.

e Use blocks to group program statements together.

e A condition can result in a value of true or false.

o When you need to change the value of an item, use a variable container.
e Don’t be lazy: use good, descriptive names for variables.

o Use plenty of whitespace, blank lines and indentation to make your programs
easier to read.

e Patterns tell per1 what to look for, not how to find it.



Exercises 47

Exercises

1. Write a program that displays the message ‘“Hey, look Ma - I can program!”
six times, sleeping for three seconds between each iteration.

2. Adapt the program from the last exercise to iterate 30 times. Arrange for
the message to appear only when the iteration count is evenly divisible by
three. To speed things up a little, remove the three-second sleep.

3. Write a program that initialises the $count scalar to ten, then iterates,
displaying a message of your choosing, until such time as the value of
$count is zero. [Hint: Review the list of Perl operators in Appendix A on
page 457].

4. Write a program that searches through the terrible program looking
for the word “count”. How many times does the word “count” appear in
terrible?



4.1

4.2

4
Places to Put Things

Exploring Perl’s built-in variable containers: arrays and hashes.

Beyond Scalars

Chapter 3, The Basics, introduced the scalar variable container: a place to put
one of something. Perl provides a rich collection of places to put things. In this
chapter, two of these other places, arrays and hashes, are explored.

Arrays: Associating Data with Numbers

It is often convenient to take a number of scalar values and treat them as one
unit. Perl supports this idea with arrays. Whereas a scalar contains a single value,
an array contains a collection of scalar values.

Arrays are named in a similar way to scalars, with the exception that the “$”
that prefixes the scalar name is replaced with “@”. Keeping the Don’t be lazy: use
good, descriptive names for variables maxim in mind, here are some good array
names:

@list_of_sequences
@totals
@protein_structures

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 0 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X



50 Places to Put Things

An array is typically populated with a list. Lists in Perl are a collection of scalar
values separated by commas and enclosed in parentheses. Here is a small list of
three short DNA sequences:

( 'TTATTATGTT’, ’GCTCAGTTCT’, ’GACCTCTTAA’ )

Note that these short DNA sequences are strings of letters, so it is necessary to
enclose them in single quotes () to have them treated as a scalars. The reader
needs to develop a good understanding of lists, as they are extensively used in
Perl.

Maxim 4.1 Lists in Perl are comma-separated collections of scalars.

To put the list of DNA sequences into an array, assign the list to the array as
follows:

@list_of_sequences = ( ’TTATTATGTT’, ’GCTCAGTTCT’, ’GACCTCTTAA’ );

Note the use of the assignment operator (=) and the semicolon at the end of the
line. It is now possible to refer to this entire list of DNA sequences with one
name, namely, @1ist_of_sequences.

Figure 4.1 shows pictorially the current state of the @1ist of sequences array.
Not only does perl arrange to put the three short DNA sequences into the array
but perT also numbers them. Starting at zero, each value in the array has a unique
number associated with it, as indicated in the figure. This number is referred to
as the value’s array index. Consequently, each scalar value in the array is now
associated with a unique number.

The array index is used to refer to an individual value of the named array.
Here’s a very important maxim.

Maxim 4.2 Perl starts counting from zero, not one.

Here’s how to display “GCTCAGTTCT” on the screen:

print "$1list_of_sequences[1]\n";

TTATTATGTT [0]
GCTCAGTTCT [1]
GACCTCTTAA [2]

Figure 4.1 The @list_of_sequences array.



4.2.1

4.2.2

Arrays: Associating Data with Numbers 51

The scalar value is accessed via its array index. Take another look at this line of
Perl code: notice how 1ist_of_sequences is prefixed with “$” and not “@”. What
is going on? Surely, arrays need to be prefixed with “@”? That’s correct, they do.
When referring to an entire array, it is necessary to prefix the array name with
“@”. However, when referring to an individual value stored in an array, commonly
referred to as an array element, the value being referred to is a scalar value and,
in Perl, scalar values are prefixed with “$”.

Working with array elements
In addition to accessing an individual element within an array, it is also possible

to assign a new value to an array element. Consider these two Perl statements:

>CTATGCGGTA’ ;
"GGTCCATGAA’ ;

$1ist_of_sequences[1]
$1ist_of_sequences[3]

The first statement changes the value associated with array index 1 to the
value indicated, another short, but different, DNA sequence. The previous value
of $Tist.of_sequences[1], which was “GCTCAGTTCT”, is overwritten by this
assignment statement. Recall that it is an individual element of the array that is
being accessed, so it is necessary once again to prefix the array name with “$”.

The second Perl statement is interesting. Until this statement was executed,
the array contained three scalar values. By referencing a new array index, per
arranges to dynamically grow the size of the @list_.of_sequences array as
needed. After these two statements execute, the original array has changed and
grown to look like Figure 4.2.

How big is the array?

It is often useful to determine the size of an array, where “size” refers to the
number of elements currently in the array. In true Perl style, and remembering

TTATTATGTT [0]
CTATGCGGTA [1]
GACCTCTTAA [2]
GGTCCATGAA [3]

Figure 4.2 The grown @11ist_of_sequences array.



4.2.3

52 Places to Put Things

the There’s more than one way to do it maxim, determining the size of an array
can be accomplished in a number of ways, as follows:

print "The array size is: ", $#list_of _sequences+l, ".\n";
print "The array size is: ", scalar @list_of_sequences, ".\n";

When executed by perl, both statements display the following message on
screen:

The array size is: 4.

When the name of the array is prefixed with “$#”, the value returned by per]l
is equal to the largest array index associated with the named array. The largest
array index for the @1ist_of_sequences array is 3. Array indexes are numbered
from 0, so 1 is added to the $# value to calculate the number of elements in the
array, which is 4 in this case.

Typically, a list is always assumed to be operating within what is known as list
context. In other words, a list is treated just like, well, a list. That said, it can
sometimes make sense to treat a list as something other than a list, specifically,
to treat it is a scalar, using it in what’s known as scalar context. Here’s a new
maxim to highlight the importance of context in Perl.

Maxim 4.3 There are three main contexts in Perl: numeric, list and scalar.

Perl’s scalar subroutine forces perl to treat a list as in scalar context. When
used with an array, the scalar subroutine first takes the array and turns it into
a list, then evaluates the list as a scalar. Doing this has to make some sense to
perl, and the only thing that makes sense is for per1 to look at the list, count
the number of elements in the list, then return the resulting scalar value, which
is 4 in this case, the number of elements in the @11ist_of_sequences array.

Adding elements to an array

Once an array has been created, adding elements to it is not difficult. As demon-
strated in the last section, the introduction of a new array index adds an element
into a named array. Another technique for adding single elements is as follows:

@sequences = ( 'TTATTATGTT’, 'GCTCAGTTCT’, ’'GACCTCTTAA’ );
@sequences ( @sequences, ’CTATGCGGTA’ );

After the first line of code, the @sequences array contains three short DNA
sequences. After the second line of code, @sequences contains an additional array
element, one which holds the scalar value “CTATGCGGTA”. Unlike the previous
technique, this method does not require the programmer to specify the next array
index. The perl interpreter looks at the @sequences array and works out the



Arrays: Associating Data with Numbers 53

value of the next available array index. Read the second line of code as “take the
current elements of the @sequences array and add the element ‘CTATGCGGTA’,
then assign all the elements back to the @sequences array, overwriting any
elements that were there previously”.

To confirm that the addition of the element has indeed occurred, display the
entire array on screen with the following line of Perl code:

print "@sequences\n";
This line of code produces the expected outcome:

TTATTATGTT GCTCAGTTCT GACCTCTTAA CTATGCGGTA

Now, watch what happens if we forget to include @sequences on the right-hand
side of the assignment operator:

@sequences = ( 'TTATTATGTT’, ’'GCTCAGTTCT’, ’'GACCTCTTAA’ );
@sequences = ( 'CTATGCGGTA’ );
print "@sequences\n";

The following is displayed:

CTATGCGGTA

Whoops! This code inadvertently deletes the original contents of the array. So be
careful. Adding a list of elements to an existing array is accomplished like this:

@sequences = ( 'TTATTATGTT’, *GCTCAGTTCT’, ’'GACCTCTTAA’ );
@sequences = ( @sequences, ( 'CTATGCGGTA’, ’CTATTATGTC’ ) );
print "@sequences\n";

Which, as expected, produces this output:

TTATTATGTT GCTCAGTTCT GACCTCTTAA CTATGCGGTA CTATTATGTC

Finally, two existing arrays are combined into a third array as follows:

@sequence_1 = ( 'TTATTATGTT’, ’*GCTCAGTTCT’, ’GACCTCTTAA’ );
@sequence_2 = ( ’GCTCAGTTCT’, ’'GACCTCTTAA’ );
@combined_sequences = ( @sequence_1, @sequence_2 );

print "@combined_sequences\n";

This produces the following output:

TTATTATGTT GCTCAGTTCT GACCTCTTAA GCTCAGTTCT GACCTCTTAA



4.2.4

4.2.5

54 Places to Put Things

Removing elements from an array

Perl’s sp1ice subroutine removes any number of elements from an array and can,
optionally, replace the removed elements with new ones. Interestingly, splice
returns the removed elements.

The spTice subroutine takes one mandatory parameter and three optional
ones. The mandatory parameter! is the name of the array. The optional param-
eters indicate where in the array to start removing elements (the OFFSET), how
many elements to remove (the LENGTH) and an array of elements (the LIST) with
which to replace the removed ones. Let’s see sp11ice in action:

@sequences = ( 'TTATTATGTT’, ’'GCTCAGTTCT’, ’GACCTCTTAA’, ’TTATTATGTT’ );
@removed_elements = splice @sequences, 1, 2;

print "@removed_elements\n";

print "@sequences\n";

The array @removed_elements contains the value “GCTCAGTTCT” and the value
“GACCTCTTAA”. The @sequences array is two elements shorter, as confirmed by
the output generated:

GCTCAGTTCT GACCTCTTAA
TTATTATGTT TTATTATGTT

Look closely at the call to splice. The value of OFFSET is 1 and LENGTH is 2.
Recalling that Perl starts counting from zero, an OFFSET of 1 refers to the
second element in the array. The LENGTH value controls how many elements are
removed from the array starting at the element referred to by OFFSET. In this
case, LENGTH is 2 so this code removes two elements from the named array,
returns the removed elements and assigns them to @removed_element.

Be careful with spT1ice. If no value for LENGTH is provided, every array element
from the OFFSET to the end of the array is removed. Similarly, if no value for
OFFSET is provided, every array element is removed. In effect, the array is emptied
of all its elements.

However, if emptying an array is the required action, assigning an empty list to
the array also empties it. This method has the added advantage of being much
faster than using sp1ice:

@sequences = (;

Slicing arrays

To access a number of array elements but not remove them, use an array slice.
Unlike sp1ice, which is a special purpose subroutine built into perT, slicing is an
extension to the array indexing mechanism. Rather than providing a contiguous
string of array elements as does sp1ice, a slice can refer to a list or range of array

1 : »
Mandatory parameters are also referred to as “required parameters”.



Arrays: Associating Data with Numbers 55

indexes. Additionally, the @ prefix is used when referring to the named array, as
a slice produces a list, not a scalar.

For example, to access the values at the second, fifth and tenth array index
locations for an array called @dnas, specify the slice as follows:

@dnas[ 1, 4, 9 1]

Use Perl’s range operator, . ., to specify a sequential collection of array indexes.
Here’s how to access the second through tenth array elements of @dnas:

@dnas[ 1 .. 9 ]

Here’s some code that highlights the differences between slicing and sp1ice:
#! /usr/bin/perl -w
# The ’slices’ program - slicing arrays.

@sequences = ( 'TTATTATGTT’, *GCTCAGTTCT’, ’'GACCTCTTAA’,
"CTATGCGGTA’, *ATCTGACCTC’ );

print "@sequences\n";

@seq_slice = @sequences[ 1 .. 3 1;

print "@seq_slice\n";

print "@sequences\n";

@removed = splice @sequences, 1, 3;

print "@sequences\n";

print "@removed\n";

Which, when executed, produces the following results:

TTATTATGTT GCTCAGTTCT GACCTCTTAA CTATGCGGTA ATCTGACCTC
GCTCAGTTCT GACCTCTTAA CTATGCGGTA

TTATTATGTT GCTCAGTTCT GACCTCTTAA CTATGCGGTA ATCTGACCTC
TTATTATGTT ATCTGACCTC

GCTCAGTTCT GACCTCTTAA CTATGCGGTA

Let’s go through this program in detail. After the standard first line and a short
comment, a five element list is assigned to the @sequences array, and the entire
array is displayed on screen:

@sequences = ( 'TTATTATGTT’, *GCTCAGTTCT’, ’'GACCTCTTAA’,
"CTATGCGGTA’, *ATCTGACCTC’ );
print "@sequences\n";

Note that the list is on two lines. This is a perfectly acceptable practice, as Perl is
a free-format language. Here, the list is written in this way to fit within the width
of this page, but it could also have been written on a single line.

The next line takes a slice of the @sequences array, requesting the val-
ues at array index 1 through 3 (that is, the second through fourth values in



4.2.6

56 Places to Put Things

the array). The list of values returned from the slice is assigned to an array
called @seq_sTice, then displayed on screen together with the @sequences
array:

@seq_slice = @sequences[ 1 .. 3 ];

print "@seq_slice\n";
print "@sequences\n";

Refer back to the output from this program to confirm that the @sequences array
has not been modified by the creation of this slice. The next line does indeed
modify @sequences because of the use of the sp1ice subroutine:

@removed = splice @sequences, 1, 3;
print "@sequences\n";
print "@removed\n";

As opposed to slicing, which requested a copy of the values stored in each of
the array elements, the splice subroutine removes the array elements from
@sequences. These are assigned to another array, this one called @removed,
which is displayed on screen after displaying what’s left of @sequences. Refer
back to the output generated by this program to confirm this.

Maxim 4.4 To access a list of values from an array, use a slice.

Maxim 4.5 To remove a list of values from an array, use splice.

Pushing, popping, shifting and unshifting

Although splicing and slicing are useful, more often single values need to be
added or removed either at the start or the end of the array. The techniques used
in the previous subsections can be used to do this. However, as the requirement
is so common, Perl provides four subroutines to make adding and/or removing
from the start and/or end of an array convenient:

shift - removes and returns the first element from an array.

pop - removes and returns the last element from an array.

unshift - adds an element (or a list of elements) onto the start of an array.
push - adds an element (or a list of elements) onto the end of an array.

Here’s a quick example that demonstrates the use of these subroutines:
#! /usr/bin/perl -w

# The ’pushpop’ program - pushing, popping, shifting
# and unshifting.

@sequences = ( 'TTATTATGTT’, ’'GCTCAGTTCT’, ’GACCTCTTAA’,



4.2.7

Arrays: Associating Data with Numbers 57

*CTATGCGGTA’ , ’ATCTGACCTC’ )3

print "@sequences\n";

$Tlast = pop @sequences;

print "@sequences\n";

$first = shift @sequences;

print "@sequences\n";

unshift @sequences, $last;

print "@sequences\n";

push @sequences, ( $first, $last );
print "@sequences\n";

Which results in the following output:

TTATTATGTT GCTCAGTTCT GACCTCTTAA CTATGCGGTA ATCTGACCTC
TTATTATGTT GCTCAGTTCT GACCTCTTAA CTATGCGGTA

GCTCAGTTCT GACCTCTTAA CTATGCGGTA

ATCTGACCTC GCTCAGTTCT GACCTCTTAA CTATGCGGTA

ATCTGACCTC GCTCAGTTCT GACCTCTTAA CTATGCGGTA TTATTATGTT ATCTGACCTC

After printing the original contents of the @sequences array, the pop subroutine
removes the last element from the array and assigns it to the $Tast scalar. The
@sequences array is printed again to show that it is now one element shorter.
A call to the shift subroutine then removes the first element from the array
and assigns it to the $first scalar. Again, the @sequences array is printed to
confirm that this is indeed the case.

The unshift subroutine is then called, with the @sequences array and the
$T1ast scalar as its parameters. This results in the value of the scalar being added
to the start of the array. The value that was originally in the last array element is
now in the first. The @sequences array is again printed to confirm that this has
happened. Finally, the push subroutine is called to add a two-element list onto
the end of the @sequences array. Note that the two-element list contains the
values of the $first and $1ast scalars. The parentheses around the two scalars
are not strictly required here, but their use helps clarify what the programmer’s
intention is.

Processing every element in an array

The while statement from the previous chapter can be used to iterate over an
entire array and process every element. Here’s how to display each of the short
DNA sequences from the @sequences array on a separate line:

#! /usr/bin/perl -w

# The ’iterateW’ program - iterate over an entire array
# with ’while’.

@sequences = ( 'TTATTATGTT’, ’'GCTCAGTTCT’, ’GACCTCTTAA’,



58 Places to Put Things

*CTATGCGGTA’ , ’ATCTGACCTC’ );

$index = 0;
$1ast_index = $#sequences;

while ( $index <= $last_index )

{
print "$sequences[ $index J\n";
++$index;

}
When executed, the iterateW program produces the following results:

TTATTATGTT
GCTCAGTTCT
GACCTCTTAA
CTATGCGGTA
ATCTGACCTC

After the usual first line and a short comment, the @sequences array is populated
with the list of short DNA sequences. A scalar called $index is initialised to
zero, and the $1ast_index scalar is initialised to the largest array index value
associated with the @sequences array, which, in this case, is 4.

The loop condition is true for as long as the value of $index is less than or
equal to (<=) the value of $1ast index. Obviously, at this stage, zero is less than
or equal to 4, so the statements inside the loop execute. The value of the element
at array index $index is printed and then the $index scalar is incremented using
the ++ operator.

The $index scalar now has the value 1, and the loop condition is checked again
to see if another iteration is to occur. In this way, each element in the array is
processed until the value of $index exceeds the value of $1ast_index. When this
occurs, the loops ends.

As processing arrays in this way is so common, Perl provides another looping
mechanism in support of this activity: the foreach statement. Here’s how to
rewrite the iterateW program to use foreach instead of while:

#! /usr/bin/perl -w

# The ’iterateF’ program - iterate over an entire array
# with ’foreach’.

@sequences = ( 'TTATTATGTT’, ’GCTCAGTTCT’, ’'GACCTCTTAA’,
"CTATGCGGTA’, "ATCTGACCTC’ );

foreach $value ( @sequences )

{
}

print "$value\n";



4.2.8

Arrays: Associating Data with Numbers 59

The results produced by iterateF are exactly the same as those produced by
the iterateW program. Take a moment to compare this program with iterateW.

With each iteration, the foreach statement arranges to assign the value from
each array element in the @sequences array to the $value scalar. Once assigned,
the $value is used as if referring to the actual array element. The implication
of this statement is that a change to the $value scalar is also reflected in the
corresponding array element in the @sequences array.

Although the use of the whiTe statement is perfectly acceptable, most perl
programmers prefer foreach.

Maxim 4.6 Use foreach to process every element in an array.

Making lists easier to work with

Recall the Lists in Perl are comma-separated collections of scalars maxim. When
the @sequences array was first defined, the advice given was to surround the
initialising list values in single quotes (’), as follows:

@sequences = ( 'TTATTATGTT’, ’'GCTCAGTTCT’, ’GACCTCTTAA’,
"CTATGCGGTA’, ’ATCTGACCTC’ )3

The use of single quotes is not strictly necessary. If the list value is a string
that contains no whitespace?, the single quotes are optional. As the short DNA
sequences contain no whitespace, the list can also be written as:

@sequences = ( TTATTATGTT, GCTCAGTTCT, GACCTCTTAA,
CTATGCGGTA, ATCTGACCTC );

As a further relaxation of the rules, it is also acceptable to remove the commas
(,) separating the list elements. Assuming, that is, that Perl’s qw operator is used,
where gw is shorthand for “quote words”. The following is another (generally
preferable) way to specify the list of items used to initialise the @sequences
array:

@sequences = qw( TTATTATGTT GCTCAGTTCT GACCTCTTAA
CTATGCGGTA ATCTGACCTC );

which is generally preferable because it involves less typing3, in addition to
reducing the likelihood of typographical errors.

2 . . .
Whitespace: a space, tab, line feed, carriage return or form feed character.

3
Developing techniques that require less typing is a uniquely Perlish way of being lazy. This
type of laziness is regarded as a good thing in the Perl programming community.



4.3

60 Places to Put Things

Hashes: Associating Data with Words

In addition to arrays, Perl provides another very useful variable container: the
hash. Unlike arrays that associate scalars with numbers, hashes associate scalars
with words.

Technical Commentary: In Computer Science circles, variable containers that
associate values with words are called associative arrays. In Perl circles, they are
called hashes. Technically, a hash is a collection of name and value pairings*. Think
of the word as the name, and the data as the value.

Maxim 4.7 A hash is a collection of name/value pairings.

Whereas scalars are prefixed with $ and arrays are prefixed with @, hashes are
prefixed with %. Here are some good hash names:

%bases
%genomes
%nucleotide_bases

A hash is populated in a number of ways. The simplest method is to use a list, as
follows:

%nucleotide_bases = ( A, Adenine, T, Thymine );

When assigned to a hash, the list is turned into a series of name/value pairings.
The first element in the list is a name, the second is a value, the third is a name,
the fourth is a value, and so on. Figure 4.3 shows pictorially the current state of
the %nucleotide_bases hash, after the above line of code is executed by perT.
The figure clearly shows the relationship between the words (names) and the data
(values).

A hash entry has a name part and a value part. Referring to Figure 4.3, the
name parts are “A” and “T”. The value parts are “Adenine” and “Thymine”.

Hashes have a restriction on how they are used: hash name parts must be
unique.

Maxim 4.8 Hash name parts must be unique.

4
Also referred to as “key-value pairs”.



4.3.1

4.3.2

Hashes: Associating Data with Words 61

A Adenine

T Thymine

Figure 4.3 The %nucleotide_bases hash.

Working with hash entries

Once a hash is populated, individual values in the hash can be accessed by
referring to their names, as follows?:

print "The expanded name for ‘A’ is $nucleotide_bases{ A’ }\n";

Given a name (““A” in this case), refer to the value associated with the name in the
hash using the syntax shown. That is, start with $, then provide the individual
hash name (nucleotide_bases), then provide the name inside curly braces (“{”
and “3}”).

Hashes, just like arrays, store scalar values. So, when referring to an individual
value associated with a name in a hash, prefix the hash name with $. Prefix the
hash name with % when referring to the entire hash.

How big is the hash?

Perl has a built-in subroutine called keys that, when called in list context, returns
a list of the names in the hash, as follows:

%nucleotide_bases = ( A, Adenine, T, Thymine );

@hash_names = keys %nucleotide_bases;

print "The names in the %nucleotide_bases hash are: @hash_names\n";
When executed, the preceding three lines of code produce the following result:

The names in the %nucleotide_bases hash are: A T

When the keys subroutine is called in scalar context (by assigning the result to
$hash_size below), it returns the number of entries in the hash, that is, the hash
size:

%nucleotide_bases = ( A, Adenine, T, Thymine );
$hash_size = keys %nucleotide_bases;

print "The size of the %hucleotide_bases hash is: $hash_size\n";

” Another popular name for the name part of a hash entry is “key”. Your authors prefer
“name”.



4.3.3

4.3.4

62 Places to Put Things

A Adenine
T Thymine
C Cytosine
G Guanine

Figure 4.4 The grown %nucleotide_bases hash.

Which, when executed by per1, produces:

The size of the %nucleotide_bases hash is: 2

Adding entries to a hash

Additional entries can be added to an existing hash one at a time. Here’s how to
add the other bases:

$nucleotide_bases{ 'G’ }
$nucleotide_bases{ 'C’ }

’Guanine’;
"Cytosine’;

Following the execution of these two statements, the %nucleotide bases hash
has grown to look like Figure 4.4. Notice anything strange about Figure 4.4? The
bases were added to the hash in the following order: ATGC, whereas the figure
shows the order as ATCG. What’s going on?

It turns out that hashes in Perl are not maintained in insertion order, as is
the case with arrays. This means it is not possible to rely on the hash being in
any particular order when working with it. A strategy for dealing with this hash
“shortcoming” is discussed later in this chapter.

As using a list is such a useful method for populating a hash, Perl offers a
convenient alias for comma (“,”), which can be used to improve the human
readability of hash assignments within a program. The “=>" combination can be
used anywhere a comma is used, and is often used as follows:

%nucleotide_bases = ( A => Adenine, T => Thymine,
G => Guanine, C => Cytosine );

Compare this with the earlier use of a list to populate the hash. Notice how the
use of “=>"" accentuates which names associate with which values.

Removing entries from a hash

A hash entry can be removed from a hash using Perl’s built-in de1ete subroutine,
which removes both the name part and value part from the hash:

delete $nucleotide_bases{ G’ };



4.3.5

Hashes: Associating Data with Words 63

The hash entry has now been removed, and the hash is one entry shorter. It is
also possible to nullify the value part of an individual hash entry by setting the
value part to an undefined value:

$nucleotide_bases{ 'C’ } = undef;

Here, a special undefined value is assigned to the value part of the hash entry
associated with “C”.

Just what is undef? In actual fact, undef is a Perl subroutine that returns the
undefined value, a special ‘nothing value” that can be assigned to any variable,
be that variable a hash, array or scalar. When a variable has undef as its value,
the variable exists but does not contain a value. Its value is undefined, or void.

Slicing hashes

As with arrays, it is also possible to slice a hash. When a hash is sliced, a list
of hash value parts is returned, so prefix the hash name with @ when slicing, as
opposed to $. Remember: what’s returned from a slice is a list.

To slice from a hash, prefix the hash name with @, and provide a list of name
parts between the curly braces. Here’s some code that demonstrates hash slicing:

%gene_counts = ( Human => 31000,
"Thale cress’ => 26000,
’Nematode worm’ => 18000,
"Fruit fly’ => 13000,
Yeast => 6000,

"Tuberculosis microbe’ => 4000 );

@counts = @gene_counts{ Human, ’Fruit fly’, ’Tuberculosis microbe’ };

print "@counts\n";

In addition to providing an example of hash slicing, these lines of code serve
to highlight some other hash characteristics. Of note is the formatting that the
programmer has chosen to use when populating the %gene_counts hash. The
comma alternative, =>, helps identify the name and value pairings. Additionally,
the alignment of the values also aids the reader’s understanding. Take a closer
look at the names. Some are enclosed in single quotes (), while others are not.
The rule is straightforward: if a hash name has no whitespace, the single quotes
are optional, as is the case with ‘“Human”, otherwise they are required, as is the
case with “TubercuTlosis microbe”. Of the three lines of code, the hash slice is
of most interest:

@counts = @gene_counts{ Human, ’Fruit fly’, ’Tuberculosis microbe’ };



4.3.6

64 Places to Put Things

Note how the hash name is prefixed with @, not $ nor %. The names of the three
values to be sliced are provided as a list within the curly braces and, once sliced,
the values are assigned to the @counts array. This array is then printed, which
results in the following:

31000 13000 4000

Working with hash entries: a complete example

Here’s a short program, called bases, which uses the %nucTleotide bases hash
to expand a short DNA sequence into a list of base names:

#! /usr/bin/perl -w
# The ’bases’ program - a hash of the nucleotide bases.

%nucleotide_bases = ( A => Adenine, T => Thymine,
G => Guanine, C => Cytosine );

$sequence = ’CTATGCGGTA’;
print "\nThe sequence is $sequence, which expands to:\n\n";

while ( $sequence =" /(.)/g )
{

}

print "\t$nucleotide_bases{ $1 }\n";

When executed, the bases program produces the following results:

The sequence is CTATGCGGTA, which expands to:

Cytosine
Thymine
Adenine
Thymine
Guanine
Cytosine
Guanine
Guanine
Thymine
Adenine

Let’s work through bases and see what’s going on. After the usual first line and
a short comment, the %¥nucleotide_bases hash is populated with names equal
to the abbreviated bases and values equal to the associated baseword. A string,
“CTATGCGGTA", is assigned to a scalar variable called $sequence and a message
is displayed on screen:



Hashes: Associating Data with Words 65

%nucleotide_bases = ( A => Adenine, T => Thymine,
G => Guanine, C => Cytosine );

$sequence = 'CTATGCGGTA’;

print "\nThe sequence is $sequence, which expands to:\n\n";

A loop then iterates over the string in the $sequence scalar:

while ( $sequence =" /(.)/g )

The condition of the loop needs further explanation. The binding operator, =",
is used to check the value in $sequence against the pattern “/(.)/g”. Perl’s
pattern-matching technology was introduced in the last chapter, and has an
entire chapter devoted to it later. Here's what this pattern does:

1. The “.” in the pattern tells Perl to find any character except newline (i.e.
any character except the “\n” character).

2. The parentheses, the “(” and “)” characters, tell perl to remember the

character found by “.” and put it into a special variable called $1.

3. The “g” after the pattern® tells Perl to apply the pattern globally. The “g”
is not technically part of the pattern, it’s a qualifier that changes how the
pattern works. In this case, the qualifier tells perl1 to apply the pattern
globally, that is, to the entire string.

The significance of this last point is that when used within a loop condition,
the pattern is applied at every possible location that it can be applied to within
the string on each iteration. That is, each time through the loop, the “.” pattern
matches each of the characters in the string one at a time. The effect of this is
that each time the loop iterates, the $1 scalar is assigned a character from the
string contained in $sequence. This allows the program to process the string
“CTATGCGGTA” one character at a time.

As the pattern matches each character, the $1 scalar contains the match. This
is then used to refer to the value part associated with the name part in the
%nucleotide_bases hash, which is then printed to the screen:

{
}

print "\t$nucleotide_bases{ $1 }\n";

Once the loop has exhausted all the characters in the $sequence scalar, it ends,
and the program terminates. Note the use of the tab character, “\t”, to indent
each line.

6
Remember: patterns are delimited by the *“/” character.



66 Places to Put Things

4.3.7 Processing every entry in a hash

Use either while or foreach to process every name/value pairing in a hash.
The genes program, which processes a hash twice, demonstrates both looping
mechanisms:

#! /usr/bin/perl -w
# The ’genes’ program - a hash of gene counts.

use constant LINE_LENGTH => 60;

%gene_counts = ( Human => 31000,
"Thale cress’ => 26000,
’Nematode worm’ => 18000,
"Fruit fly’ => 13000,
Yeast => 6000,
"Tuberculosis microbe’ => 4000 );
print -’ x LINE_LENGTH, "\n";
while ( ( $genome, $count ) = each %gene_counts )
{
print "‘$genome’ has a gene count of $count\n";
}
print -’ x LINE_LENGTH, "\n";
foreach $genome ( sort keys %gene_counts )
{
print "‘$genome’ has a gene count of $gene_counts{ $genome }\n";
}
print -’ x LINE_LENGTH, "\n";

Before working through the genes program in detail, take a look at the results
produced by this program:

‘Human’ has a gene count of 31000

‘Tuberculosis microbe’ has a gene count of 4000
‘Fruit fly’ has a gene count of 13000

‘Nematode worm’ has a gene count of 18000
‘Yeast’ has a gene count of 6000

‘Thale cress’ has a gene count of 26000

‘Fruit fly’ has a gene count of 13000

‘Human’ has a gene count of 31000

‘Nematode worm’ has a gene count of 18000
‘Thale cress’ has a gene count of 26000



Hashes: Associating Data with Words 67

‘Tuberculosis microbe’ has a gene count of 4000
‘Yeast’ has a gene count of 6000

Take particular note of the order of the two sets of results: they are different.

The genes program begins with the usual first line, a comment, a constant
definition and the population of a hash called %gene_counts. An unfamiliar-
looking print statement comes next:

print -’ x LINE_LENGTH, "\n";

This print statement demonstrates another Perl operator: x, the repetition
operator. Given something to do (in this case, print ’-’) and a number of
times to do it (in this case, LINE_LENGTH, which has a constant value of 60), this
repetition operator arranges to display a dash 60 times on the screen. Once done,
the print statement takes a newline with “\n”’.

The first loop processes the %gene_counts hash, one name/value pairing at a
time. As with the bases program, understanding the loop condition is the key to
understanding what is occurring here. Perl’s each subroutine returns the name
and value of the next entry in the hash and in this code, assigns the name part
to the $genome scalar and the value part to the $count scalar. These scalars
are then used in the print statement to display the gene count for each of the
genomes in the hash:

while ( ( $genome, $count ) = each %gene_counts )

{
}

print "‘$genome’ has a gene count of $count\n";

With each iteration, the each subroutine returns the next name/value pairing
until there are no more name/value pairings left. In this way, every entry in the
hash is processed by the loop.

The repetition operator is again used with a print statement to display 60
dashes and a newline before the second loop is executed. This loop is a foreach
statement:

foreach $genome ( sort keys %gene_counts )

{
3

print "‘$genome’ has a gene count of $gene_counts{ $genome }\n";

To understand what is going on here, concentrate on the loop condition. The
keys subroutine is used to generate a list of names from the %gene_counts hash,
then the list of names is sorted into alphabetical order by Perl’s built-in sort
subroutine. The list resulting from the call to sort is then assigned one element



68 Places to Put Things

at a time to the $genome scalar, which is then used in the body of the foreach
loop to display the gene count for each of the genomes in the hash.

This use of sort within the loop condition explains why the results from this
program produces lists in two different orders. The while statement did not
order the results, so the hash is displayed in the order that it is currently used by
perl, whereas the foreach statement explicitly instructed per1 to sort the hash
names alphabetically prior to their use. This resulted in the internal hash order
being overridden by the foreach statement.

The genes program concludes with another repeated print statement, dis-
playing 60 dashes and a newline.

Where to from Here

This chapter described Perl’s arrays, lists and hashes. The population, removal
and accessing of data in arrays and hashes was demonstrated with a small
collection of programs. Together with scalar variable containers, arrays and
hashes provide a useful collection of places to put things. Often, however, a more
complex structure for data is required, and we return to this subject in Part II.

In the next chapter, subroutines are described. What are subroutines, and why
are they useful? Read on to find out.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

o Lists in Perl are comma-separated collections of scalars.

e Perl starts counting from zero, not one.

e There are three main contexts in Perl: numeric, list and scalar.
e To access a list of values from an array, use a slice.

e To remove a list of values from an array, use splice.

o Use foreach to process every element in an array.

e A hash is a collection of name/value pairings.

e Hash name parts must be unique.

Exercises

1. Define a hash called %genome_speak, which associates the following abbrevi-
ations with the phrase in parentheses: AA (amino acid), BAC (bacterial artifi-
cial chromosome), BLAST (basic local alignment search tool), cDNA (comple-
mentary DNA), DNA (deoxyribonucleic acid), EST (expressed sequence tag),



Exercises 69

FISH (fluorescence in situ hybridization), mRNA (messenger RNA), rDNA
(recombinant DNA), RNA (ribonucleic acid), STS (sequence tagged site), SNP
(single nucleotide polymorphism) and YAC (yeast artificial chromosome)”.

2. Create a small file, called abbrevs, with the following contents:

DNA
SNP
rDNA
AA
BLAST
RNA
YAC
mRNA

Write a program to process abbrevs and display the correct phrase from
the %genome_speak hash for each abbreviation.

3. On the basis of the results produced by your solution to the previous
exercise, does it matter in which order the abbreviations are checked against
the hash name parts?

9:20 pm, 6/11/05

7
This list is taken from pages 135-136 of The Human Genome, Dennis, C. and Gallagher, R.
(editors), published 2001 by Nature Publishing Group, ISBN: 0-333-97143-4.


Administrator
v


5.1

5)
Getting Organised

Subroutines, modules and the wonder of CPAN.

Named Blocks

As programs get larger, they become harder to maintain. The process of main-
taining an existing program can involve:

fixing existing problems

adding new functionality

enhancing existing functionality

removing obsolete functionality or

AR

any combination of the above activities.

The trick - of course - is to maintain the program without adding any additional
problems to it. Such problems are commonly referred to as bugs.

Recall the genes program from the last chapter (on page 66). This line of code
occurs three times throughout the program:

print -’ x LINE_LENGTH, "\n";
Its purpose is pretty straightforward: it draws a line across the screen using the

“-" character. The length of the line is determined by the LINE_LENGTH constant,

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 0 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X



72 Getting Organised

which is set to 60 at the top of the program. The use of a constant in this way
allows the length of the line to be changed globally for all lines in the program. For
instance, changing the length of the line from 60 dashes to 40 is straightforward:
just change the constant value.

Let’s assume that a requirement exists to produce fancier lines. For example,
in addition to the standard dashed line, thus:

a collection of line styles need to be supported, such as:

-000--000--000--000--000--000--000--000--000--000--000--000-

This functionality can be provided by changing the above line of Perl code. The
single dash is changed to the character (or selection of characters), and the
constant value can either be left as it is, or changed to an appropriate value.
These next four lines of Perl code produce the lines shown above:

print "=" x LINE_LENGTH, "\n";
print "-o00o-" x 12, "\n";
print "- " x 30, "\n";

print ">>==<<==" x 8, "\n";

Look closely at the code. Although the four lines produced by these four program
statements are different, the program statements are similar. Each statement
takes a string of one or more characters and prints it a fixed number of times
(followed by a newline). It would be great if these fours lines could be replaced
with the following:

drawline "=", LINE_LENGTH;
drawline "-00o-", 12;
drawline "- ", 30;
drawline ">>==<<==", 8§;

That is, a new command (called drawline) allows one or more characters to be
defined together with a count of the number of times to repeat the character(s).
In fact, when shown in this context, “LINE_LENGTH” is a poor name for this
particular constant. “REPEAT_COUNT” is a much better name.

A good question to ask at this point is: Is it possible to create a new, custom
command like drawline with Perl? The answer is yes, new custom commands
can be created using subroutines.



5.2

5.2.1

Introducing Subroutines 73

Introducing Subroutines

Think of a subroutine as a collection of statements that has been given a name.
Because the collection is named, the subroutine can be called in much the same
way as any in-built Perl command. In addition to the name, it is possible to send
data to the subroutine as well as get results returned from the subroutine. Both
these features are optional - you do not have to send data to the subroutine or
accept any results.

Technical Commentary: Other popular names for subroutine include method,
procedure and function. Which is used often depends on the programming language
in use at the time. In many programming languages, the word function is reserved
for those subroutines that return a value, whereas the use of the word procedure
or subroutine indicates that no value is returned. The word method is more closely
associated with object-oriented programming technologies. But that’s another story
(which is very much beyond the scope of Bioinformatics, Biocomputing and Perl).
Most Perl programmers freely mix the use of the words subroutine and function.

Here’s a maxim to help you understand when to create subroutines.

Maxim 5.1 Whenever you think you will reuse some code,
create a subroutine.

Calling subroutines

Let’s assume that drawline already exists as a subroutine. To call (or invoke)
drawline, use either of the following:

drawline "=", REPEAT_COUNT;
drawline( "=", REPEAT_COUNT );

Subroutines are invoked with or without parentheses!. It is also possible to
invoke drawline like this:

drawline;
drawline();

Which may do nothing, print a blank line or produce some sort of default line
(such as sixty dashes), depending on how the programmer has coded the subrou-
tine. Note that it is also legal (more correctly, “official”’) Perl syntax to prefix the
name of the subroutine with “&”. However, as such usage is optional, the vast
majority of Perl programmers do not bother. There are a number of places where
the “&” is required, and per] is pretty good at providing a warning message when
such requirements are violated.

1The reasons for the use of one style over the other are not something we need to go into
right now. The important point is that both styles are OK, and both work. Some programmers
prefer one style over the other. Our advice: pick one style and try to use it consistently. But be
aware of the other style.



5.3

74 Getting Organised

Creating Subroutines

Creating a subroutine is straightforward once a name has been decided upon.
As with variable containers, the trick here is to use good, descriptive names for
subroutines, such as:

drawline
find_a_sequence
convert_data

as opposed to:

my_subroutine
subl
tempsub

which do not provide any clue as to the role of the subroutine, whereas the good
names do. It is generally not a good idea to give a subroutine a name that is
already used as a Perl command (such as “print”). Of course, Perl does not stop
a programmer from doing this, but the subroutine cannot be expected to work
the way it is supposed to.

With a good name decided upon, create a subroutine by prefixing the name
with the word “sub”, and postfixing it with the block of statements to execute,
recalling that blocks are contained within curly braces. Here’s an empty version
of drawTine:

sub drawline {

}

This subroutine is “empty” because the block contains nothing.

Note the style of indentation used here. The opening curly brace appears
immediately after the subroutine name (on the same line), while the closing curly
brace appears below, and aligned to, the “s” in “sub”. This is the indentation
style preferred by the majority of Perl programmers. However, as with most Perl
things, style is personal, so alternative indentation techniques are common, for
example:

sub drawline { }

sub drawline

{
3



Creating Subroutines 75

sub drawline

{
}

Pick an indentation style and try to use it consistently. To have the drawline
subroutine do something, add statements to the block, as follows:

sub drawline {
print "-" x REPEAT_COUNT, "\n";
}

To use drawline within a program, simply include the subroutine within the
program’s code, then invoke it as needed. When invoked, the program goes off
and executes the statement(s) in the subroutine, then returns to the statement
immediately after the invocation. Here’s a program called first_drawline that
does just that?:

1. #! Jusr/bin/perl -w
2. # first_drawline - the first demonstration program for "drawline".

3. use constant REPEAT_COUNT => 60;

4. sub drawline {

5. print "-" x REPEAT_COUNT, "\n";

6. }

7. print "This is the first_drawline program.\n";

8. drawline;

9. print "Its purpose is to demonstrate the first version of drawline.\n";
10. drawline;

11. print "Sorry, but it is not very exciting.\n";

When executed by perT, this program prints the following:

This is the first_drawline program.

Sorry, but it is not very exciting.

The placement of the drawl1ine subroutine within the program is worth explain-
ing. By and large, per1 does not care where in your program a subroutine is
included. Some programmers like to include all of their subroutines near the top
of their program (as is the case here), while others prefer to place subroutines

2 . ) . .
Note that line numbers are included here for illustrative purposes only; they are not part of
the program code.



5.3.1

76 Getting Organised

at the bottom. Yet others place them in any arbitrary location (which is syntacti-
cally legal, but hard to justify). Although per1 typically does not care where the
subroutine is placed, programmers should care. As already advised, consistency
is important here, so pick either near the top of your program or at the bottom?3.

No matter where a subroutine is placed, its code is not executed until it is
invoked by some calling code. So, even though drawline is defined on line 4 of
first_.drawline, it is not executed until it is invoked on line 8.

As is stands, draw11ne works, but is not very flexible. For instance, if drawline
is invoked like this:

drawline "=== ", 10;

it still prints 60 dashes instead of ten copies of the “=== " pattern. The reason
for this is that drawl1ine has not been told what to do with any data that is sent
to it. When working with subroutines, this data is referred to as parameters or
arguments.

Processing parameters

When parameters are sent to a subroutine, per1 puts the individual data items
into a special array, the default array, called @_%. Once there, the parameters can
be accessed using standard array indexing syntax, as follows:

print "$_[0]"; # The first parameter.
print "$_[1]1"; # The second parameter.
print "$_[2]"; # The third parameter, and so on.

That is, prefix the name of the array (which is *“_”’) with a dollar sign, then indicate
the array index that is to be accessed within the square brackets. This may
look strange, but is perfectly fine Perl syntax. Armed with this information, let’s
rewrite the drawline subroutine to process some parameters:

sub drawline {
print $_[0] x $_[1], "\n";
}

This version of drawline has the advantage of supporting any character pattern
and any value for the repeat count, but the disadvantage of no longer supporting
the invocation of drawline without parameters®. It is no longer enough to call
drawline like this:

drawline;

3 . . .
And it’s your choice. Just because we place our subroutines near the top of our programs does
not mean that we are right and everyone else is wrong. It just means that this is our preference.

4
We already know that the default scalar is $_ and now we know that the default array is @..
So, does this mean that the default hash is %_? No, it does not. There is no default hash in Perl.

5
And if you try to, per1 complains quite loudly.



Creating Subroutines 77
It has to be invoked like this:
drawline "-", REPEAT_COUNT;

or like this:

drawline( "-", REPEAT_COUNT );

Which is a bit of a drag, until you realize that it can now be called like any of
these:

drawline "=", REPEAT_COUNT;
drawline( "-00o-", 12 );
drawline "- ", 30;
drawline( ">>==<<==", 8 );

This new version of drawl1ine is used to replace the one from first_.drawline,
producing a new program, called second_drawline. The four example invoca-
tions of the draw11ine subroutine above are also added to the program:

#! Jusr/bin/perl -w
# second_drawline - the second demonstration program for "drawline".
use constant REPEAT_COUNT => 60;

sub drawline {
print $_[0] x $_[1], "\n";

}

print "This is the second_drawline program.\n";

drawline "-", REPEAT_COUNT;

print "Its purpose is to demonstrate the second version of drawline.\n";
drawline "-", REPEAT_COUNT;

print "Sorry, but it is still not exciting. However, it is more useful.\n";
drawline "=", REPEAT_COUNT;

drawline "-o00o-", 12;

drawline "- ", 30;

drawline ">>==<<==", 8;

Which, when executed, produces the following output:

This is the second_drawline program.

Sorry, but it is still not exciting. However, it is more useful.

-000--000--000--000--000--000--000--000--000--000--000--000-

SO ==<L==0>=m=K LK== 0 ==K Lm0 > ==K LK=mEm=0 0> ==K LK== > e LK<Em =m0 o> =LKL= > e <Ll=s



5.3.2

78 Getting Organised

By accessing the individual elements of the default array (@), the drawline
subroutine is now able to support repeatedly printing any sequence of characters,
which is quite useful. In fact, “accessing the individual elements of the default
array” is so common that Perl provides an alternative technique for achieving
the same thing without having to use the strange looking $_[0] syntax. Recall
the shift function from the Places To Put Things chapter that when invoked,
removes and returns the first element from a named array. When used on its own
(that is, without referring to a named array), as follows:

shift; # Or 1like this: shiftQ;

the function returns and removes the first element from the default array®. It
is now possible to rewrite drawline for the third time to take advantage of the
shift function:

sub drawline {
print shift() x shift(), "\n";
}

Note the use of the parentheses after shift, which are required in this instance
by perT.

It is left as an exercise for the reader to replace the drawline from the
second_drawline program with this new subroutine, creating third_.drawline.
When executed, third.drawline produces the same output as that provided by
second drawline.

Better processing of parameters

The third version of drawline is good, but it can be made better. Specifically, let’s
arrange to support default behaviour that ensures something sensible happens
when no (or incomplete) parameters are provided to drawline. This sensible
behaviour involves printing 60 dashes. Take a look at this, the fourth version of
drawline:

sub drawline {
$chars = shift || "-";
$count = shift || REPEAT_COUNT;

print $chars x $count, "\n";

¥

6If you were able to guess this, congratulations: you are beginning to think like a Perl
programmer. If you did not guess this but understand what’s going on, congratulations: you are
beginning to think like a Perl programmer. If you are somewhat lost, congratulations: go back
and reread this section.



Creating Subroutines 79

There are a few (new) things going on here. Two scalar variables are used within
the subroutine, and they take their value from the two parameters supplied to
drawline. The $chars scalar is assigned the first parameter (thanks to shift),
and the $count scalar is assigned the second parameter (again, thanks to shift).
These scalars are then used with the print command to draw the appropriate
linestyle.

The | | symbol is another Perl operator, and it means “or”. Here, it is used to
provide default values to the two scalars. The assignment to the $chars scalar
takes its value either from the first parameter or, if no parameter is provided, is
set to a single dash. The assignment to the $count scalar takes its value either
from the second parameter or, if no parameter is provided, is set to the value of
REPEAT_COUNT. So, it is now possible to invoke drawl1ine like this:

drawline "=== ", 10;
to print ten copies of the “=== " pattern or, like this:
drawline;

to print the default line of 60 dashes. It is also possible to print 60 of any pattern
by not providing a value for the second parameter, as follows:

drawline "="; # Prints sixty equal signs.
drawline "*"; # Prints sixty stars.
drawline "$"; # Prints sixty dollars.

Which is neat. However, the ordering of the parameters is important, as this
version of drawline expects the character(s) first, and the repeat count second.
So, invoking drawline like any of these causes a problem:

drawline 40; # Does NOT print forty dashes!

drawline 20, ;  # Does NOT print twenty dashes!

Consider that this most recent version of drawline agrees a contract with
programmers that use it. If the parameters are in the correct order, the contract
holds. If they are not, the contract is broken (and who knows what will happen?).
Here’s another program, called fourth_drawline, that uses the fourth version
of the drawline subroutine (and honours the contract):

#! /usr/bin/perl -w
# fourth_drawline - the fourth demonstration program for "drawline".
use constant REPEAT_COUNT => 60;

sub drawline {
$chars = shift || "-";



5.3.3

80 Getting Organised

$count = shift || REPEAT_COUNT;

print $chars x $count, "\n";

}

print "This is the fourth_drawline program.\n";

drawline;

print "Its purpose is to demonstrate the fourth version of drawline.\n";
drawline;

print "Sorry, but it is still not exciting. However, it is more useful.\n";

drawline "=", REPEAT_COUNT;
drawline "-o00o-", 12;
drawline "- ", 30;

drawline ">>==<<==", 8;

When executed, the output from fourth_drawline is similar to that of both
second_drawline and third.drawline. This version is better, but still not the
best. It would be helpful if drawline allowed the parameters to be supplied in
any order. With Perl, this too is possible.

Even better processing of parameters

To provide a means whereby parameters are provided in any order, a parameter
naming mechanism is required. Look at these invocations of drawline:

drawline;

drawline( Pattern => "*" );

drawline( Count => 20 );

drawline( Count => 5, Pattern => " -00o- " );
drawline( Pattern => "===", Count => 10 );

The first invocation prints the default 60 dashes. The second prints 60 stars. The
third prints 20 dashes. The fourth invocation prints five copies of the “ -00o- ”
pattern. And the sixth invocation prints ten copies of the “===" pattern.

Note that with these invocations of the next version of drawline, the sub-
routine now supports zero, one or two parameters. In addition, the param-
eters are named and, as such, can appear in any order. When parameters
are missing, the subroutine does the most sensible thing by substituting rea-
sonable default values. It's up to the programmer calling the subroutine to
use whichever parameter ordering makes most sense. How’s that for a flexible
contract?

When data is passed to any subroutine, per1 takes the data and populates the
default array. So, if the invocation of draw11ine looks like this:

drawline( Count => 5, Pattern => " -00o- " );



Creating Subroutines 81

Count [o]

5 [1]
Pattern [2]
" -00o- " [3]

Figure 5.1 The default array, @_, with assigned values.

the default array is assigned a list of items that looks like this”:

"Count", 5, "Pattern", " -o00o- "

That is, four values are assigned to the default array, which looks like Figure 5.1.
The default array is now available within the subroutine. What happens next is
the key to the entire parameter naming mechanism. Recall from the Places To Put
Things chapter that an array can be used to initialise a hash. If the first statement
in a subroutine is this:

%arguments = @_;

the %arguments hash is assigned the values in the default array, namely, the
string “Count” as a name, with 5 as its value, and the string “Pattern’” as a name,
with “ -000- " as its value. After the assignment, the hash looks like Figure 5.2.
The %arguments hash now associates values with parameter names. When com-
bined with the | | operator, the %arguments hash can be used to assign values to
scalar variables:

$chars ;
REPEAT_COUNT;

$count

$arguments{ Pattern } ||
$arguments{ Count } ||

Count 5

Pattern -000-

Figure 5.2 The %arguments hash, with assigned values.

7

If this looks strange, recall that Perl’s => symbol is another representation for comma.
Additionally, note that perl is correctly (and sensibly) surrounding the words “Count” and
“Pattern” with double quotes, since they are strings.



82 Getting Organised

The first statement sets the $chars scalar to equal the value associated with
“Pattern” or, if no value is associated, sets it to a single dash. The second
statement sets the $count scalar equal to the value associated with “Count” or,
if no value is associated, sets it to the value of REPEAT_COUNT. Here’s the fifth
version of drawline:

sub drawline {
$chars = $arguments{ Pattern } || ;
$count = $arguments{ Count } || REPEAT_COUNT;

no,

print $chars x $count, "\n";

¥

The fifth drawline program shows the latest version of drawline in action:
#! /usr/bin/perl -w
# fifth_drawline - the fifth demonstration program for "drawline".
use constant REPEAT_COUNT => 60;

sub drawline {
%arguments = @_;

$chars = $arguments{ Pattern } || ;

$count = $arguments{ Count } || REPEAT_COUNT;
print $chars x $count, "\n";
}
print "This is the fifth_drawline program.\n";
drawline;
print "Its purpose is to demonstrate the fifth version of drawline.\n";
drawline;

print "Things are getting a Tittle more interesting.\n";

drawline( Pattern => "*" );

drawline( Count => 20 );

drawline( Count => 5, Pattern => " -00o- " );
drawline( Pattern => "===", Count => 10 );
drawline;

which, when executed, produces the following output:

This is the fifth_drawline program.

Things are getting a 1little more interesting

e e e e e ¥ ¥ v Yo o S S T %

-000- -00o0- -00o- -00o0- -000-




5.3.4

Creating Subroutines 83

which confirms that drawline can be invoked with zero, one or two named
parameters, supplied in any order. When parameters are not supplied, this
version of drawline does the sensible thing.

A more flexible drawline subroutine

As a final twist to this subroutine, consider the inclusion of the newline at the
end of the print command on the subroutine’s last line. This ensures that any
line drawn includes a newline, which is a reasonable assumption to make until
an attempt is made to draw something like this:

In an attempt to produce the first line, it is not possible to do something like this:

non

print "+";
drawline( Count => 15 );
print "+";

as these three statements produce the following:

which is not what is required because of the inclusion of the newline at the
end of the print command within drawl1ine. Removing the newline results in a
version of drawT1ine that is more flexible (in that it fixes this particular problem)
at the expense of requiring the programmer to worry about newlines. As long as
this forms part of the contract, this is OK. Assuming a non-newline version of
drawline, here’s the code to draw the first line of the box:

print "+";
drawline( Count => 15 );
print "+\n";

A common temptation is to rewrite these three lines as one single print com-
mand:

non

print "+", drawline( Count => 15 ), "+\n";

which seems like a reasonable thing to do, until the statement is executed and it
produces this:



5.3.5

84 Getting Organised

Whoops! What’s going on here? Well, let’s take a look at what the statement is
doing: it's a single print command that includes a literal “+”, an invocation of
drawline, another literal “+” and a newline.

When per1 processes this statement, it looks at the parameters to print8, and
determines that drawline is a subroutine call, so per1 invokes drawline before
continuing with the invocation of print. This results in 15 dashes appearing on
screen. Having finished with drawline, per1 then returns to the print command
and starts printing. The first thing printed is the literal “+”. Next up is the result
of the invocation of drawline. As drawline succeeded in printing its 15 dashes,
the result of the invocation was true, which in Perl is the value 1, so “1” is
printed. The print command concludes by printing the second literal “+” and a
newline. This explains the unexpected output. Of course, Perl has a solution to
this problem, as discussed below.

Returning results

Rather than have drawline actually draw (that is, print) the line, let’s have
drawTine return the correctly formatted line to the caller. The calling code can
then do what it likes with the line, which may or may not include printing it. The
change is trivial: change the call to print within drawline to a call to return.
The return command, when invoked, causes the current subroutine to termi-
nate immediately. When provided with a value, return sends the value to the
caller. Here’s another version of draw11ine that implements these changes:

sub drawline {
%arguments = @_;

$chars $arguments{ Pattern } || ;
$count = $arguments{ Count } | | REPEAT_COUNT;

return $chars x $count;

A program, called boxes, uses this version of drawline to draw the box from
the last section:

#! /usr/bin/perl -w
# boxes - the box drawing demonstration program for "drawline".
use constant REPEAT_COUNT => 15;

sub drawline {
%arguments = @_;

8 . . .
Note: printis a subroutine, too.



5.4

Visibility and Scope

REPEAT_COUNT;

$chars = $arguments{ Pattern } ||
$count = $arguments{ Count } |

return $chars x $count;

}

print "+", drawline, "+\n";

print "|", drawline( Pattern => " " ), "|\n";
print "|", drawline( Pattern => " " ), "|\n";
print "|", drawline( Pattern => " " ), "|\n";
print "|", drawline( Pattern => " " ), "|\n";
print "|", drawline( Pattern => " " ), "|\n";
print "+", drawline, "+\n";

Note the clever adjustment to the value of the REPEAT_COUNT constant.

Visibility and Scope

85

No discussion of subroutines would be complete without describing scope. Scop-
ing relates to the visibility of a variable throughout the lifetime of a program (that

is, as it runs). It is best described by way of example. However, first a maxim.

Maxim 5.2 When determining the scope of a variable,
think about its visibility.

Consider this small program, called global_scope:
#! /usr/bin/perl -w
# global_scope - the effect of "global" variables.

sub adjust_up {
$other_count = 1;
print "count at start of adjust_up: $count\n";
$count++;
print "count at end of adjust_up: $count\n";

}

$count = 10;

print "count in main: $count\n";

adjust_up;

print "count in main: $count\n";

print "other_count in main: $other_count\n";

When executed, the global_scope program prints these messages on screen:

count in main: 10
count at start of adjust_up: 10



5.4.1

86 Getting Organised

count at end of adjust_up: 11
count in main: 11
other_count in main: 1

The $count scalar is accessible within the entire program, including any sub-
routines (such as adjust up). Additionally, the $other_count scalar, which is
assigned a value of 1 within the adjust_up subroutine is also accessible within
the entire program. Both of these statements are confirmed by the messages
produced by global_scope. The reason for this behaviour is that by default, and
if not told otherwise, perl treats all variables as being global in scope, where
“global” is defined as accessible from anywhere within the disk-file that contains
the program code.

This behaviour can be very convenient, but also very dangerous. For instance, it
might well be the case that the programmer who wrote the adjust up subroutine
did not intend the $other_count scalar to be visible outside adjust_up. After
all, it is created within adjust up, so perhaps the intention was to have the value
visible only within that subroutine.

Also, consider trying to track accesses and adjustments to a global. Within a
small program, like global_scope, keeping track of each of the variables is not
a difficult task. However, consider a program that is 10,000 lines long. It is much
more difficult to “keep track of things” when programs grow large. Is it possible
to be sure that all of the program’s variables (which are all global by default) are
being accessed appropriately? Probably not.

Many computer scientists are aghast at Perl’s default attitude regarding variable
scope. This is due to the fact that the vast majority of programmers are taught
from a very young age that “globals are bad” and are told “don’t use globals”.
As a result, programmers grow up avoiding the use of globals at all costs, which
is a shame. The truth is that globals are bad if used incorrectly but when used
correctly, can greatly simplify some programs. In an effort to be as flexible as
possible, the creators of Perl went against the groove and made all variables
global by default. Despite this, it is possible to limit the likelihood of error in this
area, as described below.

Using private variables

To help keep things organised, Perl provides a number of mechanisms that limit
the visibility of a variable. The most common is the use of the my command,
which limits the scope of a variable to within its enclosing block (curly braces),
subroutine or file. When you use my to declare a variable, it tells per1 to treat the
variable as private to its enclosing scope.

Technical Commentary: Within the Perl world, such variables are often referred to
as lexicals or mys, as in “use a lexical” or “‘set the my variable to 10”.



Visibility and Scope 87

As will be shown in the Perl Grabbag chapter, per1 can force the programmer to
always use my variables. For now, let’s rewrite global_scope to use my and see
what effect it has. This new program is called private_scope:

#! /usr/bin/perl
# private_scope - the effect of "my" variables.

sub adjust_up {
my $other_count = 1;
print "count at start of adjust_up: $count\n";
$count++;
print "other_count within adjust_up: $other_count\n";
print "count at end of adjust_up: $count\n";

3

my $count = 10;

print "count in main: $count\n";

adjust_up;

print "count in main: $count\n";

print "other_count in main: $other_count\n";

The $other_count scalar within the adjust_up subroutine is now private to the
subroutine, because of the use of my. The $count scalar within the main code is
also declared as a my when it is set to 10. Now, take a look at the output produced
by this program by perl:

count in main: 10

count at start of adjust_up:
other_count within adjust_up: 1
count at end of adjust_up: 1
count in main: 10

other_count in main:

The value of the private $count (which is set to 10) is printed. The adjust_up
subroutine is then called. After creating a private scalar called $other_count and
setting it to 1, the value of the global variable $count is printed. But look at what
happened: no value was printed. Why did the value 10 not print?

Well, at this point in the program’s execution cycle, the $count scalar does not
yet exist. A private scalar (which also happens to be called $count) does exist,
but its visibility has been limited to the main code by the use of my, which means
it is not accessible from within any subroutines. It is a private variable, after all.

Recall that when a variable is first used, it is assigned a default value (usually
nothing). When $count is first used within the adjust_up subroutine, it is created
as a global variable (remember: the private $count cannot be accessed), and given
a default value. When printed, nothing appears, as the default value is nothing.
At this point, two $count scalars exist: one is private to the main code, and the



5.4.2

88 Getting Organised

other is global. Within adjust_up, the global $count is increment with the ++
operator. This causes the value of nothing to have 1 added to it, so the global
$count now has a value of 1. The private $other_count scalar is then printed,
giving a value of 1, as is the global $count (which is also 1). The adjust_up
subroutine then ends.

Returning to the main code, the next statement prints the value of the private
$count, whichis 10 (not 1). Note that although a global $count variable now exists
(thanks to adjust_up), the private variable of the same name takes precedence.

The final statement of the private_scope program attempts to print the
value of $other_count. Again, nothing prints for the same reason as nothing
printed for the access of $count at the start of the adjust_up subroutine. The
$other_count scalar within the subroutine is private to the subroutine, which
means its value cannot be accessed outside of the subroutine. So, in the main
code, when $other_countis accessed, it is first created as a global, given a default
value of nothing and then printed, which has the effect of printing nothing, as
confirmed by the last line of output from the program.

Using my variables as a general rule is highly recommended. So much so, in
fact, that it warrants another maxim.

Maxim 5.3 Unless you have a really good reason not to,
always declare your variables with my.

Using global variables properly

There are times, of course, when a global is warranted. Rather than declare a
variable without my and get a default global, a better practice is to specifically
state that a global is required by use of the our command (which is only available
in Perl version 5.6.0 and higher).

Let’s look at a program that uses our, is based on private _scope and is called
hybrid_scope:

#! /usr/bin/perl
# hybrid_scope - the effect of "our" variables.

sub adjust_up {
my $other_count = 1;
print "count at start of adjust_up: $count\n";
$count++;
print "other_count within adjust_up: $other_count\n";
print "count at end of adjust_up: $count\n";

¥

our $count = 10;
print "count in main: $count\n";
adjust_up;



5.4.3

Visibility and Scope 89

print "count in main: $count\n";
print "other_count in main: $other_count\n";

The $count scalar within this program’s main code is now declared with our.
Let’s see the effect this has on the output produced:

count in main: 10

count at start of adjust_up: 10
other_count within adjust_up: 1
count at end of adjust_up: 11
count in main: 11

other_count in main:

Unlike private_scope, the $count within hybrid_scope is deliberately global,
so when accessed within the adjust up subroutine, its value is accessible. The
subroutine prints the value (10), increments $count and prints it again (11). Note
that the value of $count within the main code is also 11, as it is the same variable.
The $other_count variables behave exactly as they did in the private_scope
program. Here’s another maxim:

Maxim 5.4 If you must use a global variable,
declare it with our.

It is also possible to use the Tocal command to limit the visibility of variables,
but it has been superseded by my and common wisdom appears to suggest that
the use of local be avoided. So, the use of local is quietly avoided within
Bioinformatics, Biocomputing and Perl.

From this point on, all of the presented code will use my and our as appropriate.

The final version of drawline

Now that scoping is understood, let’s return to the drawline subroutine and
produce a final version that uses my?.

Referring back to page 84, there really is no reason why the %arguments,
$chars and $count variables within draw11ine need to have global scope, so let’s
make them private:

sub drawline {
my %arguments = @_;

non,

my $chars
my $count

$arguments{ Pattern } || ;
$arguments{ Count } | | REPEAT_COUNT;

return $chars x $count;

}

We promise that this is in fact the final version of drawline. However, we reserve the right
to change our minds.



5.5

20 Getting Organised

This tidies up the coding considerably. As the three variables within drawline
are private to the subroutine, the use of my instructs per1 to ensure that they
are.

Thinking about the visibility of variables and the scope within which they
operate is important and when used properly, leads to good software design.

In-built Subroutines

In addition to letting programmers create their own subroutines, Perl also has
a large collection of in-built subroutines. The entire collection is documented in
the perl1func on-line documentation, which comes with Perl. Use this command
on Linux to view the document:

man perlfunc

Alternatively, use the perldoc program (which also comes with Perl) to search
the perlfunc document for the documentation specific to a subroutine. For
instance, to view the documentation for the in-built sTeep subroutine, use this
command:

perldoc -f sleep

The in-built subroutines take a varying number of parameters, so always check
the documentation for specifics. Be aware that some in-built subroutines can
perform differently on the basis of how they are invoked and used. This book
has already used some of the more popular in-built subroutines (which have been
referred to as “Perl commands”). Here is an abbreviated list!?:

alarm - Signals an alarm to occur a number of seconds in the future.

chomp - Deletes the trailing newline character from a scalar.

chop - Deletes the last character from a scalar.

close - Closes a previously opened filehandle.

defined - Returns “true” if a variable has a value associated with it.

delete - Deletes elements/entries from an array/hash.

die - Exits the current program after displaying a user-specified message.

do - Executes a block of statements as one, or reads in a collection of statements
from another disk-file and executes them.

1
0Whjch is based on a similar list from Paul’s first book, Programming the Network with Perl,
Wiley, 2002.



In-built Subroutines 91

each - Used to iterate over a hash.

eof - Tests for the end-of-file condition when working with disk-files.
eval - Evaluates a block of code and provides for exception handling.
exists - Returns “true” if a specific array element or hash entry exists.
exit - Exits the current program.

gmtime - Returns the date and time relative to GMT.

join - Joins a list of strings together.

keys - Returns a list of keys for a specified hash.

Tast - Exits from the current loop.

Tength - Returns the length of a scalar variable.

Tocaltime - Returns the date and time relative to the local time zone.
my - Marks a variable as being lexically scoped.

next - Starts the next iteration of the current loop.

open - Opens a file, and associates a filehandle with it.

our - Declares a global variable.

pack - Converts a collection of variables into a string of bytes.
package - Declares a new namespace.

pop - Treats an array like a stack, and pops the last element off the end of the
array.

print - Prints something.
printf - Prints to a particular format.

push - Treats an array like a stack, then pushes an element onto the end of the
array.

read - Reads a specified number of bytes from a filehandle.
redo - Restarts the current loop iteration.

ref - Checks to see whether a scalar is a reference, and if it is, returns the type
of reference as a string.

return - Returns a value from a subroutine.
scalar - Forces a list to be treated as if it were a scalar.

shift - Treats an array like a stack, and pops the first element off the start of
the array.



5.6

92 Getting Organised

sTeep - Pauses execution for a specified number of seconds.

sort - Sorts a list using string comparison order (by default), or by using some
user-specified ordering.

splice - Removes specified elements from an array.

split - Splits a delimited string into a list of individual elements.
sprintf - Like printf, above, except the result is assigned to a scalar.
sub - Declares a subroutine.

substr - Extracts a sub-string from a string.

system - Calls an operating system command, and returns its exit status to the
calling program.

time - Returns the number of non-leap seconds since the operating systems
“epoch”1l,

undef - Takes a previously defined variable, and undefines it.

unpack - The reverse of pack, above, which extracts a list of values from a string
of bytes.

unshift - Treats an array like a stack, and pushes an element onto the start of
the array.

wantarray - Returns “true” if a subroutine was called within a list context,
“false” otherwise.

warn - Sends output to standard error (which may or may not be the screen).

write - Writes a specified number of bytes to a filehandle.

To reiterate, this list is not complete. See per1func for the complete list.

Grouping and Reusing Subroutines

The drawline subroutine is quite useful, and if a requirement exists to draw
lines in a lot of different programs, it may well be a subroutine in each. Although
this is a strategy that works, that is, cutting ‘n’ pasting the subroutine into every
program that needs it, it introduces a problem. What happens if, at some stage
in the future after the subroutine has been used in 443 programs, a decision
is made to change how drawline works!2. Furthermore, imagine a decision is

11 . . . . . .
What the operating system thinks is the start of time. It varies from system to system. This
means that the start of time is different on Linux, Windows and Mac OS. Yes, they could not
even agree on that!

12 . L. .
Don’t worry, we aren’t going to. A promise is a promise, after all.



5.6.1

Grouping and Reusing Subroutines 93

made to ensure that the change is a global one, in that every program that
uses drawline needs to be changed. That’s 443 changes, or 443 cuts and 443
pastes, or whatever. Let’s further assume that each change takes (on average) one
minute - that’s 443 minutes! And, that’s before each of those 443 programs are
re-tested now that they have changed.

Let’s face it. Given such a situation, a reason will be found not to make
the change. But it need not be like this. Most modern programming languages,
including Perl, provide a mechanism to reuse a subroutine in multiple programs
while maintaining a master copy of the code. If a change is required, the master
copy of the subroutine is changed, tested and then released. The other programs
are not even touched.

Say “hello” to the Perl module.

Modules

At its most basic (and useful), a module in Perl is a place to put subroutines that
can then be used by many programs.

Maxim 5.5 When you think you will reuse a subroutine,
create a custom module.

Let’s assume that the drawl1ine subroutine is part of a module called UsefulU-
tils. A program can access drawline by first using the module, then calling the
subroutine, with code something like this:

#! /usr/bin/perl -w

use Tib "$ENV{’HOME’}/bbp/";
use UsefulUtils;

drawline;

As drawline is part of the UsefulUtils module, it does not appear in the
source code of the program that wishes to use it. The use statement “pulls in”
the drawline subroutine as required.

The use 1ib statement tells per1 where to find custom modules. More on this
later.

Creating a custom module in Perl has been standardised. Every module starts
with the following “blank” template:

package;
require Exporter;

our @ISA = gw( Exporter );



94 Getting Organised

our Q@EXPORT = qwQ);
our @EXPORT_OK = qw(Q);
our %EXPORT_TAGS = Q;

our $VERSION = 0.01;

1;

The module template starts with a package statement. This introduces and names
the module, and creates a new namespace. To start creating UsefulUtils, start
with a package statement like this:

package UsefulUtils;

The rest of the module template needs only minor changes. The require state-
ment, together with the our @ISA statement, tells perl that the custom module
draws on the facilities offered by a standard Perl module, called Exporter. It is
not important that module writers understand what these two lines do. However,
it is really important that they are included within each custom module, so leave
these lines as they are.

Three “export” variables are then declared. The first, an array called @GEXPORT,
is set to the empty list. By adding to this list, it is possible to have a subroutine
automatically imported into the program that uses the custom module.

The second variable, an array called @EXPORT_OK, is again set to the empty list.
By adding to this list, it is possible to allow the program that uses the custom
module to specify the subroutine(s) to import.

The final “export” variable, a hash called $EXPORT_TAGS, can be used to group
related subroutines within the module into tagged categories. These can then be
used to import the groups into the program that uses the custom module.

The UsefulUtils module is designed to house a collection of loosely related
utilities. As such, there’s no requirement to automatically export any subroutines,
so the @EXPORT array is left empty. Users of the module are required to specifically
identify the utility subroutine they wish to import into a program, so let’s add
the name of the only subroutine that we have to the @EXPORT_OK array:

our @EXPORT_OK = qw( drawline );

The $VERSION scalar is used to track the maturity of the module. Typically, when
the module is under development, the version number is less than 1. As the
module matures, the version number is increased. For now, the version number
is set to 0.01, as the module is under development and very new.

The “1;” at the end of the module ensures that the module returns true when
it is used. Again, this is a detail that must be included, so make sure the last
statement of every custom module is “1;”. The subroutines to be included in the
module are placed between the $VERSION scalar and the “1;”.



Grouping and Reusing Subroutines 95

Here’s the first version of the UsefulUtils module, which includes the draw-
Tine subroutine:

package UsefulUtils;

# UsefulUtils.pm - the useful utilities module from "Bioinformatics,
# Biocomputing and Perl".

require Exporter;

our @ISA

gw( Exporter );

our @EXPORT = qwQ);
our @EXPORT_OK gw( drawline );
our %EXPORT_TAGS = Q;

our $VERSION 0.01;

use constant REPEAT_COUNT => 60;

sub drawline {
# Given: a character string and a repeat count.
# Return: a string that contains the character string
# "repeat count" number of times.

#
# Notes: For maximum flexibility, this routine does NOT include
# a newline ("\n") at the end of the Tine.

my %arguments = @_;

non,

my $chars
my $count

$arguments{ Pattern } || ;
$arguments{ Count } | | REPEAT_COUNT;

return $chars x $count;

}
1;

Note the inclusion of a number of comments, which is always a good idea.
Note also the requirement to give the module a name that ends in “.pm”. The
REPEAT_COUNT constant is also included in the module.

Before continuing, let’s put any custom modules that are created into a standard
location. Create a directory under your home directory called “bbp”, and copy
the module there:

mkdir ~/bbp/
cp UsefulUtils.pm ~/bbp/

The UsefulUtils module can now be used by any program. Here’s another
version of the boxes program, called boxes2, that uses the module:



5.7

5.8

96 Getting Organised

#! /usr/bin/perl -w
# boxes2 - the box drawing demonstration program for "drawline".

use 1ib "$ENV{’HOME’3}/bbp/";
use UsefulUtils qw( drawline );

print "+", drawline( Count => 15 ), "+\n";

print "|", drawline( Pattern => " ", Count => 15 ), "|\n";
print "|", drawline( Pattern => " ", Count => 15 ), "|\n";
print "|", drawline( Pattern => " ", Count => 15 ), "|\n";
print "|", drawline( Pattern => " ", Count => 15 ), "|\n";
print "|", drawline( Pattern => " ", Count => 15 ), "|\n";
print "+", drawline( Count => 15 ), "+\n";

The use 1ib statement tells per]l where to find any custom modules. When
UsefulUtils is used, a list of subroutines to import is provided. Note that
unlike boxes, this program has to explicitly provide a value for the “Count”
parameter, as the default repeat count is 60, not 15.

In later chapters, the UsefulUtiTs module is extended with more subroutines.

The Standard Modules

The Perl programming environment comes with a large collection of standard
modules. Take a look at the perTmod1ib document for a complete list using this
command:

man perlmodlib

Each standard module described in the perTmodlib document comes with its
own documentation. It is highly recommended that every Perl programmer take as
much time as is needed to become familiar with the standard modules. The reason
for this advice is simple: if a standard module already implements a particular
piece of functionality, it is always better to use the standard module than to
attempt to write a subroutine or module that provides the same functionality.

Maxim 5.6 Don’t reinvent the wheel;
use or extend a standard module whenever possible.

So, don’t waste time - take advantage of the excellent functionality that is
included with Perl by way of the standard modules.

CPAN: The Module Repository

In addition to the standard modules, the Perl programming community, via a large
web-site, provides a facility for programmers to share their work with others.



5.8.1

CPAN: The Module Repository 97

What sets the Perl community apart from others is the extent to which this
sharing is coordinated and practised. The Comprehensive Perl Archive Network,
more commonly referred to as “CPAN”13, contains a vast collection of modules
pertaining to every conceivable task that Perl can be put to. So, whether the
requirement is to manipulate graphics images or interact with a web server, a
CPAN module more than likely exists to assist in the task. To start exploring what
CPAN has to offer, visit this web-site and start reading:

http://www.cpan.org

All the modules on CPAN are donations made by a growing community of
Perl programmers from around the globe, and any Perl programmer is free to
download a module of interest and use it. As with the standard modules, the
advice is straightforward: use a CPAN module rather than creating a custom
module to do the same thing. Even if a CPAN module does not do exactly what
is needed, it may be worthwhile downloading and tweaking it to meet a specific
requirement. After all, CPAN modules are distributed in source code form, so
it is simply a matter of editing the module and including the changes that are
required.

Maxim 5.7 Don’t reinvent the wheel;
use or extend a CPAN module whenever possible.

If the changes made to a CPAN module are considered of use to others, program-
mers are encouraged to submit the changed module to CPAN so that the entire
community can benefit from the enhancements. In this way, the truly useful
modules available on CPAN get better with time. Programmers who submit their
work to CPAN are referred to as CPAN authors.

Maxim 5.8 When you think others might benefit from a custom
module you have written, upload it to CPAN.

Searching CPAN

In addition to the main CPAN web-site, another interface to the repository can be
found at

http://search.cpan.org

This web-site provides a mechanism to search CPAN by module, keyword, author
and so on. It also provides a browseable categorisation of all of the modules that
are available. Take some time to experiment and explore this web-site.

13
Pronounced ‘“‘see-pan”.



5.8.2

98 Getting Organised

Installing a CPAN module manually

To use a CPAN module, it needs to be installed into your Perl installation. This
process has been standardised. Let’s assume that a requirement exists to install
a module called ExampleModule into a Perl installation!#. To begin, decompress
and unpack the downloaded file:

tar zxvf ExampleModule-0.03.tar.gz

CPAN modules are typically distributed in a packed, compressed format. The
above command decompresses the disk-file and then unpacks its contents. A
directory called ExampleModule-0.03 is created, and all of the disk-files needed
to install ExampleModule are put into this directory. To prepare for the install,
change into this directory and use Perl to create the required makefile:

cd ExampleModule-0.03
perl Makefile.PL

It should now be possible to build and test ExampleModule using the standard
Linux make command:

make
make test

It is usual for a collection of messages to appear on screen as a result of issuing
these commands. If things go well, the module is now ready to install. For the
next command to succeed, superuser privilege is required. If not already logged
in as root, temporarily become the superuser as follows:

su

The root password will be required. As superuser, finish the install by issuing
this command:

make install
<Ctrl1-D>

Note the use of the <Ctr1-D> key-combination after the make install com-
mand. This logs out the superuser. As a general rule, work in superuser mode
(i.e., as root) only for as long as is needed. It is generally a bad idea to do regular
work logged in as root. Trust us when we tell you that if you spend a lot of time
logged in as root, sooner or later, bad things will happen.

The installation of the module can be tested using either of these two com-
mands:

14
As with the other example commands in this book, the assumption is that you are running
Linux. These commands should also work with Mac OS X and UNIX. If you are running Windows,
use the Perl Package Manager (ppm) to install CPAN modules.



5.8.3

5.8.4

CPAN: The Module Repository 99

man ExampleModule
perl -e ’use ExampleModule’

The first command should display the documentation for ExampleModuTle. The
second command should display nothing - the Linux command-prompt should
reappear after a short delay. If the second command displays a message some-
thing along the lines of the following:

# Can’t Tocate ExampleModule.pm in @INC.
# BEGIN failed--compilation aborted at -e line 1.

this means that the module has been installed incorrectly. If the on-line docu-
mentation is missing, this too means that the module has been installed incor-
rectly. Check that the above instructions have been followed correctly. If they
have, check any README and INSTALL disk-files that came with the module for
additional installation instructions.

Installing a CPAN module automatically

In addition to manually installing CPAN modules, it is also possible to have per]
do the work for you. The fictitious module from the previous section can be
installed into Perl with this single command:

perlT -MCPAN -e "install ’ExampleModule’"

Use of this command assumes the following: the computer upon which this
command is executed has to have an active Internet connection, and the com-
mand is issued by the superuser. This command downloads the ExampTeModule
distribution disk-file, decompresses and unpacks it, then installs it into Perl. And
it does it automatically, allowing you to sit back and relax!>.

Which begs the question: why spend time describing the manual installation
technique when CPAN modules can be installed automatically with commands
such as this one? The answer to this reasonable question is that not all modules
successfully install automatically. So, it is important to understand the manual
installation process should anything go wrong during an automatic install.

A final word on CPAN modules

Not all CPAN modules are created equal. Some are well supported, have an
active user community and are of high quality. Some are test modules, proof
of concepts and are (sometimes) of dubious quality. It is important to test any

15Well, almost. If this is the first time you have executed a command like this, you will be
prompted to answer a series of questions. Read the prompts and pick the appropriate answer
from those provided. Also, keep an eye on the messages produced by the automatic installation,
just in case an error occurs.



100 Getting Organised

module downloaded from CPAN to ensure it works the way it is expected to. Do
not blindly trust that a module works in a certain way simply because it says so
in its documentation. Test, test and test again.

Maxim 5.9 Always take the time to test downloaded CPAN modules
for compliance with specific requirements.

Having said that, CPAN really is a wonderful resource. It is the collected wisdom
and work of the Perl community as a whole. Many Perl programmers, when
asked why they continue to use and favour Perl, respond with a single word:
CPAN.

Where to from Here

In this chapter, the idea of code reuse was explored, first with subroutines and
then with modules. Additionally, the standard modules and CPAN were described.
This was a large chapter, and it covered a lot of important material. In the next
chapter, another important topic is introduced: input/output.

The Maxims Repeated
Here’s a list of the maxims introduced in this chapter.

o Whenever you think you will reuse some code, create a subroutine.
o When determining the scope of a variable, think about its visibility.

e Unless you have a really good reason not to, always declare your variables
with my.

o If you must use a global variable, declare it with our.

o When you think you will reuse a subroutine, create a custom module.

o Don’t reinvent the wheel; use or extend a standard module whenever possible.
o Don’t reinvent the wheel; use or extend a CPAN module whenever possible.

o When you think others might benefit from a custom module you have written,
upload it to CPAN.

o Always take the time to test downloaded CPAN modules for compliance with
specific requirements.



Exercises 101

Exercises

1. Write a subroutine, called drawbox, that draws boxes. The subroutine should
accept two named parameters, Height and Width, which are used to specify
the dimensions of the box. In the absence of either or both of the named
parameters, the drawbox subroutine should substitute appropriate default
values.

2. Add the drawbox subroutine to the UsefulUti1s module.

3. The Plain Old Documentation (POD) technology, included with Perl, supports
the addition of documentation to a program or module. Use the “man
perlpod” command to access the POD documentation to read and learn
about POD. Use POD to add appropriate documentation to the UsefulUtiTls
module.

4. Explore the CPAN repository. Find a module that interests you, then down-
load and install it into your Perl installation. Examine the disk-files that are
included with the module, paying particular attention to the CPAN author’s
use of POD. Be sure to test the CPAN module to ensure it works the way you
expect it to.

5. Use the perldoc command to search the perlfunc document for informa-
tion on a subroutine called wantarray. Experiment with wantarray, then
write a small subroutine that accepts a list of words as its parameters. Have
the subroutine return the list of words when invoked in list context. When
called in scalar context, the subroutine returns a count of the number of
words provided as parameters to it. Can you think of a good name for such
a subroutine?



6.1

6.1.1

6
About Files

Input, output and other things.

I/0O: Input and Output

Data entering a program is referred to as its input, while data produced by a
program is its output. Rather than refer to (and write) “input/output”, most
programmers simply say “I0”, which is written as 1/0.

The majority of the programs presented in the previous chapters have been
self-contained, in that they do not rely on data from any external source in order
to work. On top of this, these programs have been happy to send their results
to the screen. This is fine when all that is important is the demonstration of
programming concepts. However, real programs work on real data, and data is
typically stored in disk-file. In this chapter, the 1/0 facilities provided by Perl are
described.

I/0 facilities are often referred to as streams. It is possible to have many
streams associated with a program, with some of them classed as input streams
and others classed as output streams. As a minimum, every Perl program has
three standard streams available to it.

The standard streams: STDIN, STDOUT and STDERR

Before creating streams of our own, let’s review the standard streams, which
were touched on briefly in Chapter 3.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 0 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X



104 About Files

The standard input stream (STDIN) is the default place from which data enters
a program. Typically, STDIN is the keyboard, but it can also be a disk-file. To read
data from STDIN, use the input operator:

my $data = <STDIN>;
As STDIN is the default input stream, the following is identical to the above:
my $data = <>;

per] is smart enough to know that an “empty” input operator actually refers to
STDIN by default.

The standard output stream (STDOUT) is the default place to which data is sent
by a program. Typically, STDOUT is the screen, but it can also be a disk-file. To
write data to STDOUT, use print:

print STDOUT $data;

As STDOUT is the default output stream, the following is identical to the above:
print $data;

Again, per1 is smart enough to know that print sends data to STDOUT by default.

The standard error stream (STDERR) is the default place to send error messages
to. As with STDOUT, STDERR is typically the screen, but error messages can be
sent to any other output stream (with a disk-file the most common case). To write
data to STDERR, use print:

print STDERR "Something terrible has happened ... aborting.\n";

As this is such a common requirement, Perl provides a special subroutine (called
warn) that makes this more convenient:

warn "Something terrible has happened ... aborting.\n";

Why provide two output streams, namely, STDOUT and STDERR? Surely, both
streams do essentially the same thing, that is, output data? Well, “essentially the
same” does not mean “exactly the same”. The former output stream is designed
to be used for data, the latter is reserved for error messages, and data and error
messages are not the same thing. If a program is happily outputting data, then
spots an error and generates a message and then continues to happily output
data again, it is reasonable to expect that the error message will not corrupt
the output data, especially if the output data is being written to a disk-file.
By separating the error message from standard output, the error message can
display on screen while the (uncorrupted) data can safely end up in a disk-file.



6.2

Reading Files 105

Reading Files

The getlines program from The Basics chapter (on page 41) demonstrates a
standard technique for taking data one line at a time from a disk-file and feeding
it as standard input to a program one line at a time. By specifying one or more
filenames on the command-line, perl is able to process disk-files sequentially
(that is, one disk-file at a time), taking the data one line at a time from a disk-file
whenever the input operator is used.

Now, imagine a requirement exists to merge two disk-files. For the purposes
of this discussion, imagine that merging the two disk-files is defined as reading
a line from the first disk-file and sending it to STDOUT, then reading a line from
the second disk-file and sending it to STDOUT, then reading the next line from
the first disk-file and sending it to STDOUT, then reading the next line from the
second disk-file and sending it to STDOUT and so on, until there are no more lines
to read from either of the disk-files. If the first disk-file contains these lines:

This is the first disk-file, line
This is the first disk-file, line
This is the first disk-file, line
This is the first disk-file, line
This is the first disk-file, line

v WN R

and the second disk-file contains these lines:

This is the second disk-file, Tine 1.
This is the second disk-file, 1line 2.
This is the second disk-file, 1line 3.

then the merged output should look like this:

This is the first disk-file, line 1.
This is the second disk-file, 1line 1.
This is the first disk-file, line 2.
This is the second disk-file, 1line 2.
This is the first disk-file, Tine 3.
This is the second disk-file, 1line 3.
This is the first disk-file, line 4.
This is the first disk-file, Tine 5.

Given this requirement, the sequential behaviour of get11ines will not work when
merging two disk-files, as getlines is programmed to deal with a disk-file in
its entirety before processing another. Some other strategy is required when two
disk-files are to be merged. Let’s start by trying a strategy based on these steps:

e Determine the names of the two disk-files to be merged.

¢ Open the two disk-files to enable data to be read from them.



6.2.1

106 About Files

e Read a line from the first disk-file, then write it to STDOUT.
e Read a line from the second disk-file, then write it to STDOUT.

o Repeat the last two steps until there are no more lines to read.

Each of these steps is discussed in the subsections that follow. The merge
program is called merge2files.

Determining the disk-file names

One technique for determining the names of the disk-files is to avoid determining
them at all, and write the program in such a way that the two names are always
the same. The user of the program must make sure that the two disk-files are
named in a way that the program expects. Such a practice is referred to as
hard coding, and is best avoided as it tends to lead to inflexible solutions. The
merge2files program needs to work with any two disk-files. The two disk-files
to be merged are named on the command-line as parameters to the merge2files
program.

As with subroutines, parameters passed to a program are made available in a
special array. Unlike subroutines, where the @_ default array is used, the array
of command-line parameters is called @ARGV, and is automatically populated by
perl.Here’s a small program, called determine_args, that determines the values
of one or two command-line parameters:

#! Jusr/bin/perl -w

# determine_args - print out the names of the disk-files named on
# the command-Tine.

if ( $#ARGV != 1 )

{
warn "Please supply the names of two disk-files on the command-Tine.\n";
exit;

}
my ( $first_filename, $second_filename ) = @ARGV;

print "first disk-file name is: $first_filename\n";
print "second disk-file name is: $second_filename\n";

As @ARGV is an array like any other, the $# prefix is used to provide the value of
the last array index. Recalling that Perl starts counting from zero, a value of 1 for
$#ARGV means that the array contains two values. A check for this is performed
at the start of the determine_args program, and if anything other than two
command-line parameters are provided, the program displays an error message
(thanks to warn) and then terminates by invoking the exit subroutine.



Reading Files 107

As the warn and exit combination is so common, Perl provides the die
subroutine, which does the same thing. The two lines from determine_args can
be replaced with this single line:

die "Please supply the names of two disk-files on the command-Tine.\n";

After determining that exactly two command-line parameters are provided to the
program, the elements of the @ARGV array are assigned to two lexical variables
with this line:

my ( $first_filename, $second_filename ) = G@ARGV;

By surrounding the two lexical variables with parentheses, a temporary list is
created on the left-hand side of the assignment operator. As an array is already
on the right-hand side of the assignment operator, per1 is smart enough to take
the individual elements of the @ARGV array and assign each of them (in turn) to
the named lexicals in the list. This is a very convenient and compact shorthand
technique, which is equivalent to this:

my $first_filename = $ARGV[0];

my $second_filename = $ARGV[1];
and to this:
my $first_filename = shift;

my $second_filename = shift;

as shift, when used within the main code of a program, works with @ARGV by
default. The determine_args program concludes by displaying the two disk-file
names on STDOUT. When invoked as follows:

perl determine_args first_file.txt second_file.txt

the program produces this output:

first disk-file name 1is: first_file.txt
second disk-file name is: second_file.txt

When invoked with anything other than two command-line parameters, the
program complains:

Please supply the names of two disk-files on the command-line.



6.2.2

108 About Files

Opening the named disk-files

The determine_args program, despite the messages that it produces, does not
actually check that the command-line parameters supplied to it refer to existing
disk-files. It is certainly the intention that they do, but “intentions” are difficult, if
not impossible, to program. Ideally, the parameters need to be checked to ensure
that they refer to a disk-file and that if they do, the disk-file can be opened and
read from. It is not sensible to try to open a disk-file that does not exist, or that
cannot be read from.

Perl provides a number of file test operators that can help herel. Here is an
expanded version of determine_args, renamed check_args, that uses three file
test operators to:

1. Check that a disk-file associated with the name exists, and
2. Check that the disk-file is a plain disk-file, and
3. Check that the disk-file can in fact be read from.

Here is the entire source code to the check_args program:
#! Jusr/bin/perl -w

# check_args - check that the disk-files named on the command-line exist.

if ( $#ARGV 1= 1)
{

}

die "Please supply the names of two disk-files on the command-Tine.\n";

my ( $first_filename, $second_filename ) = @ARGV;

unless ( -e $first_filename && -f $first_filename && -r $first_filename )
{

}

die "$first_filename cannot be accessed. Does it exist?\n";
unless ( -e $second_filename && -f $second_filename && -r $second_filename )
{
}

The key statement is this one:

die "$second_filename cannot be accessed. Does it exist?\n";

unless ( -e $first_filename && -f $first_filename && -r $first_filename )

which checks if the disk-file named in the $first_filename scalar exists using
the -e file operator. This statement also checks to see if the disk-file is a plain
disk-file using the -f file operator in combination with the && “and” operator.
Finally, the statement checks to see if the disk-file can be read from, using the
-r file operator together with &&. If all three of these conditions hold, then the
disk-file can be opened. If any one of these three conditions is false, the disk-file

1 .
These are sometimes referred to as the dash operators.



Reading Files 109

cannot be opened, which explains the use of unless instead of the more usual
if, that is, unless all three conditions hold, the program dies.

With the status of the disk-files determined, it is now possible to open each of
them and assign them to filehandles:

open FIRSTFILE, "$first_filename";
open SECONDFILE, "$second_filename";

The filehandles in these examples are FIRSTFILE and SECONDFILE. These are a
convenient way of referring to a disk-file, and can be thought of as variable names
for open disk-files. Any word can be used as a filehandle, and it is a convention
to use all UPPERCASE when naming filehandles.

Technical Commentary: The use of the word “handle” is sometimes confusing.
Think of a handle as a simple way of referring to something that is often more
complex. CB radio hams know all about handles: they think up simple names to
refer to themselves, as opposed to using a more complex identification mechanism.

The open subroutine is part of Perl, and it expects two parameters: the name of a
filehandle to be created and the name of a disk-file to be opened. The invocations
of open can also be written like this:

open FIRSTFILE, "<$first_filename";
open SECONDFILE, "<$second_filename";

The “less-than” symbol tells open to open the disk-file for reading. When no
symbol is provided, it is assumed to be a less-than symbol. That is, open defaults
to reading disk-files.

Even though care was taken to ensure that the disk-file could be opened,
something can still go wrong?. It is prudent to check that the open on the
disk-file succeeded, but appending a check to the open invocation:

open FIRSTFILE, "$first_filename"

or die "Could not open $first_filename. Aborting.\n";
open SECONDFILE, "$second_filename"

or die "Could not open $second_filename. Aborting.\n";

Now, if either disk-file cannot be opened, the program aborts with an appropriate
error message.

In addition to opening disk-files prior to using them, it is prudent to close
them as soon as they are no longer needed. Closing disk-files is straightforward:
invoke Perl’s close subroutine and pass the filehandle as its sole parameter:

close FIRSTFILE;
close SECONDFILE;

2
Perhaps the disk-file does not belong to you and, as a result, the operating system is happy
to let you check that it exists, is a plain disk-file and can be read from. However, the operating
system may not be happy to let you open the disk-file since it is not yours.



6.2.3

6.2.4

110 About Files

Surprisingly, it is not absolutely necessary to specifically close disk-files when
finished with them, as perl1 automatically closes any open filehandles when a
program ends, thereby closing the associated disk-file. Despite this convenience,
many programmers advise that a disk-file should be kept open only for as long as
itis needed. This is sensible advice, so here’s a maxim to highlight its importance:

Maxim 6.1 Open a disk-file for as long as needed, but no longer.
And here’s another, just to be sure:
Maxim 6.2 If you open a disk-file, be sure to close it later.

Reading a line from each of the disk-files

To read from STDIN, place STDIN inside the input operator. To read from any
filehandle, place the filehandle name inside the input operator, as follows:

my ( $Tinefromfirst, $linefromsecond );

$Tinefromfirst = <FIRSTFILE>;
$1inefromsecond = <SECONDFILE>;

which could not be any more straightforward, could it? Two lexical variables are
declared using my, then each is assigned a line from each of the filehandles.

Putting it all together

With the disk-file names determined, the filehandles opened and a mechanism in
place to read from them, it’s now time to attempt to bring everything together to
create merge2files. The only missing piece is a loop to read from the filehandles
until there are no more lines to read:

#! Jusr/bin/perl -w
# merge2files - merge the two disk-files named on the command-Tine.

if ( $#ARGV 1= 1)
{

}

die "Please supply the names of two disk-files on the command-Tine.\n";

my ( $first_filename, $second_filename ) = @ARGV;

unless ( -e $first_filename && -f $first_filename && -r $first_filename )
{

}

die "$first_filename cannot be accessed. Does it exist?\n";

unless ( -e $second_filename && -f $second_filename && -r $second_filename )



Reading Files 111

{
}

die "$second_filename cannot be accessed. Does it exist?\n";
open FIRSTFILE, "$first_filename"
or die "Could not open $first_filename. Aborting.\n";

open SECONDFILE, "$second_filename"
or die "Could not open $second_filename. Aborting.\n";

my ( $1linefromfirst, $1inefromsecond );

while ( $Tinefromfirst = <FIRSTFILE> )

{
$1inefromsecond = <SECONDFILE>;
print $1inefromfirst;
print $1inefromsecond;

}

close FIRSTFILE;
close SECONDFILE;

The while loop keeps going while there are lines to read from the FIRSTFILE
filehandle. Every time through the loop, the $1inefromfirst scalar is set to a
line from the first disk-file, and the $1inefromsecond scalar is set to a line from
the second disk-file. Let’s make the merge2files program executable and run it
against the two disk-files to see what happens:

chmod +x merge2files
./merge2files first_file.txt second_file.txt

The following messages appear:

This is the first disk-file, line 1.

This is the second disk-file, Tine 1.

This is the first disk-file, 1ine 2.

This is the second disk-file, line 2.

This is the first disk-file, 1line 3.

This is the second disk-file, Tine 3.

This is the first disk-file, line 4.

Use of uninitialized value in print at merge2files 1ine 35, <SECONDFILE> line 3.
Use of uninitialized value in print at merge2files line 35, <SECONDFILE> line 3.
This is the first disk-file, 1ine 5.

Use of uninitialized value in print at merge2files 1ine 35, <SECONDFILE> 1ine 3.
Use of uninitialized value in print at merge2files 1ine 35, <SECONDFILE> line 3.

Oh dear, some of these messages were not expected.

The “Use of uninitialized value in print ... ” messages are gener-
ated by perl, not by merge2files. The line numbers are significant. The 35
refers to the line 35 in the merge2files program, specifically, this one:

print $1linefromsecond;



112 About Files

and the 3 refers to the number of lines that have been read from the SECONDFILE
filehandle. The problem is that the two disk-files being merged are of differing
lengths: there are five lines in the first and three in the second. By continuing to
loop while there are lines in the first disk-file, the program gets into difficulty
when it runs out of lines in the second disk-file, which results in the messages
from perl. This is bad enough, but look what happens when the order of the
disk-files is reversed on the command-line:

./merge2files second_file.txt first_file.txt

This execution of merge2files produces the following output:

This is the second disk-file, Tine 1.
This 1is the first disk-file, 1line 1.
This is the second disk-file, Tine 2.
This is the first disk-file, 1ine 2.
This 1is the second disk-file, line 3.
This is the first disk-file, Tine 3.

Which looks OK, as the error messages are gone. However, this is not correct
either: lines four and five from the first disk-file are missing in the output!
The reason for this is that the loop terminates when it runs out of lines from
second_file.txt, so lines four and five from the first_file.txt are never
read. This is actually worse than the previous execution of the merge2files
program, as this output looks OK, when, in fact, it is not.

There are a number of strategies that can be used to solve this problem3. One
is to stop the offending line from printing if the second file has already reached
the end of the file. Perl’'s eof subroutine returns true if a named filehandle has
run out of lines. The next version of the merge program, called merge2files_v2,
replaces the offending statement (line 35) with these:

if ( !eof( SECONDFILE ) )

{
$1inefromsecond = <SECONDFILE>;
print $linefromsecond;

This code checks to see that the SECONDFILE has reached the end of the file or not.
If it has not, another line is read and assigned to the $1inefromsecond scalar and
then printed. If the filehandle has reached the end of the file, nothing happens,
as there are no more lines to read. When executed with this command-line:

./merge2files_v2 first_file.txt second_file.txt

3
The implementation of one of them is included as one of this chapter’s exercises.



Reading Files 113

this version of the merge program produces this output:

This is the first disk-file, line 1.
This is the second disk-file, 1line 1.
This is the first disk-file, Tine 2.
This 1is the second disk-file, 1line 2.
This is the first disk-file, Tine 3.
This is the second disk-file, Tine 3.
This is the first disk-file, line 4.
This is the first disk-file, Tine 5.

which is correct. When the order of the disk-files is reversed on the command-line,
the following output is produced:

This is the second disk-file, Tine 1.
This is the first disk-file, line 1.
This is the second disk-file, line 2.
This is the first disk-file, line 2.
This is the second disk-file, 1line 3.
This is the first disk-file, Tine 3.

which is still incorrect. In fact, this version of the merge program produces correct
output only when the first disk-file has the same or more lines than the second
disk-file, which, clearly, will not do.

The problem is that when the second disk-file has more lines than the first, the
merge program finishes too early. By introducing another loop, immediately after
the existing loop, it is possible to ensure that any “forgotten” lines are processed.
Here’s the second loop, which continues to process the second disk-file after
the lines from the first are exhausted. The loop ends when the second disk-file
reaches the end of the file:

while ( !eof( SECONDFILE ) )

{
$1inefromsecond = <SECONDFILE>;
print $1linefromsecond;

3

This code is added to merge2files_v2, creating merge2files_v3, as follows:
#! /usr/bin/perl -w
# merge2files_v3 - third version of merge2files: merge the disk-files named
# on the command-1ine (with some help from eof).

# Make sure all lines are read from both disk-files.

if ( $#ARGV I=1)
{

}

die "Please supply the names of two disk-files on the command-line.\n";

my ( $first_filename, $second_filename ) = @ARGV;



6.2.5

114 About Files

unless ( -e $first_filename && -f $first_filename && -r $first_filename )
{

}

die "$first_filename cannot be accessed. Does it exist?\n";

unless ( -e $second_filename && -f $second_filename && -r $second_filename )

{
}

die "$second_filename cannot be accessed. Does it exist?\n";
open FIRSTFILE, "$first_filename"
or die "Could not open $first_filename. Aborting.\n";

open SECONDFILE, "$second_filename"
or die "Could not open $second_filename. Aborting.\n";

my ( $Tinefromfirst, $linefromsecond );

while ( $1inefromfirst = <FIRSTFILE> )

{
print $linefromfirst;
if ( !'eof( SECONDFILE ) )
$Tinefromsecond = <SECONDFILE>;
print $1linefromsecond;
}
}

while ( !eof( SECONDFILE ) )

$Tinefromsecond = <SECONDFILE>;
print $1linefromsecond;

}

close FIRSTFILE;
close SECONDFILE;

The merge2files_v3 program now satisfies the merging requirement as specified
at the start of this chapter, and the ordering of disk-file names on the command-
line no longer matters. Any two disk-files (of varying lengths) can be merged
with this program. Take a few moments to run this program against a number of
different disk-files to check this claim.

Slurping

The ability to read a line of data from a disk-file is very useful. However, there
are occasions when it is convenient to read an entire disk-file in one go. This is
referred to as “slurping”.

To slurp a disk-file, use the input operator and, instead of assigning what’s
read to a scalar, assign what’s read to an array:

@entire_file = <>;



Reading Files 115

As the input operator is invoked in list context, per1 reads the entire disk-file and
assigns it, one line at a time, to an array called entire_file. Here is a program,
called sTurper, which uses this technique. Note the inclusion of drawl1ine from
the UsefulUti1s module:

#! /usr/bin/perl -w

# slurper - a program which demonstrates disk-file "sTurping".

use 1ib "$ENV{’HOME’3}/bbp/";
use UsefulUtils qw( drawline );

open FIRSTSLURPFILE, "first_file.txt"
or die "Could not open first slurp disk-file. Aborting.\n";

open SECONDSLURPFILE, "second_file.txt"
or die "Could not open second slurp disk-file. Aborting.\n";

my @linesfromfirst <FIRSTSLURPFILE>;
my @linesfromsecond = <SECONDSLURPFILE>;

print drawline( Count => 40 ), "\n";
print @linesfromfirst;
print drawline( Count => 40 ), "\n";
print @linesfromsecond;
print drawline( Count => 40 ), "\n";

close FIRSTSLURPFILE;
close SECONDSLURPFILE;

Unlike the merge2files programs, this program ignores the maxims from earlier
and hard codes the names of the disk-files as part of the open statements, a
practice that is best avoided?. When executed, that slurper program produces
the following:

This is the first disk-file, 1line 1
This is the first disk-file, line 2.
This is the first disk-file, Tine 3.
This is the first disk-file, line 4
This is the first disk-file, line 5
This is the second disk-file, line 1.
This is the second disk-file, 1line 2.
This is the second disk-file, 1line 3.

4
Rest assured, your authors have slapped themselves on the wrist for this.



6.3

116 About Files

In addition to the single statement that reads the entire disk-file into its associated
array, look at how the single print statement is used to display the entire array
on screen (STDOUT). Recall that print takes a “list of things to display” as its
parameters. The single array is a list of lines.

Be careful when slurping disk-files, especially if the disk-file contains a lot
of material. When data is read into a variable, it is allocated a small piece of
the computer’s memory. This memory is a finite space and, while a program is
running, will start to fill-up with the data that the program is using. A small
slurped disk-file is (usually) easily accommodated. A large slurped disk-file may
cause a “memory overflow”, resulting in a program terminating because of this.
Consequently, it is often better to read one line at a time from a large disk-file.
You have been warned, so be careful.

Writing Files

To write to a disk-file, use the “greater-than” symbol when invoking open, as
follows:

my $file_to_open = "errors.log";

open( LOGFILE, ">$file_to_open" )
or die "Could not write to/create errors log disk-file.\n";

This open statement creates the errors.log disk-file and opens it for writing.
If the disk-file already exists, it is discarded. This is affectionately known as
clobbering’. If the disk-file does not already exist, the call to open creates it.

It is often the case that a disk-file needs to retain the content that it already
has, something that is particularly true of logs. When open is called like this:

open( LOGFILE, ">>$file_to_open" )
or die "Could not append to/create errors log disk-file.\n";

the disk-file is opened in append mode (note the double greater-than symbols,
known as chevrons). Anything written to the disk-file is appended to the content
that already exists within it. In this way, the disk-file grows (and is not clobbered).
To write to a disk-file, use print to send data to it:

print LOGFILE "Error: something terrible has happened.\n";

The filehandle to write to is the first parameter to print. By including the
filehandle, per1 sends data to a disk-file as opposed to STDOUT.

5
“Slurping” ... “clobbering” ... who says Perl’s not fun?



6.3.1

6.3.2

Writing Files 117

Redirecting output

It is also possible to create a disk-file as a result of executing any program. For
example, by executing the merge2files program with the following command-
line, anything written to STDOUT is sent to a disk-file called merge.out, clobbering
it if it already exists. Unlike the example code just described, be aware that the
operating system, not perl, is creating, and then writing to, the disk-file:

./merge2files first_file.txt second_file.txt > merge.out

To append to the disk-file, use chevrons on the command-line, as opposed to the
greater-than symbol:

./merge2files first_file.txt second_file.txt >> merge.out

The above commands take anything written to STDOUT and redirect it to the
named disk-file. Anything written to STDERR still appears on screen. To redirects
anything written to STDERR, use a command-line like this:

./merge2files first_file.txt second_file.txt > merge.out 2> merge.err

which redirects standard output to merge.out and any error messages (standard
error) to merge.err. Chevrons can be used to append to the disk-files as opposed
to clobbering them:

./merge2files first_file.txt second_file.txt »>> merge.out 2>> merge.err

Variable interpolation

This is an appropriate place to discuss the process of variable interpolation.
When a variable is written to a filehandle, what prints depends on whether or not
the variable is enclosed within single or double quotes. Consider these program
statements:

my $sequence = "TTATTATGTT GCTCAGTTCT GACCTCTTAA CTATGCGGTA";

print "The sequence is: $sequence\n";
print 'The sequence is: $sequence\n’;

When executed by per]T, the following output displays:

The sequence is: TTATTATGTT GCTCAGTTCT GACCTCTTAA CTATGCGGTA
The sequence 1is: $sequence\n

By using double quotes to surround that which is to be printed, per1 knows to
replace the $sequence scalar with its contents, as well as turn the “\n” into a
newline. This process is known as interpolation. When single quotes surround
that which is to be printed, no interpolation occurs, and the string prints as-is
(that is, it prints literally).



6.4

118 About Files

Chopping and Chomping

When working with input data, two useful in-built subroutines are chop and
chomp®.

The chop subroutine, when provided with a scalar variable, removes the last
character from the scalar and returns it. Consider this code:

my $dna = "ATGTGCGGTATTGCTGACCTCTTA\n";
my $last = chop $dna;

# $dna is now "ATGTGCGGTATTGCTGACCTCTTA";
my $next = chop $dna;

# $dna is now "ATGTGCGGTATTGCTGACCTCTT";

With each invocation of chop, the $dna scalar is shortened by one character, and
the character is assigned to the named scalar. The $1ast scalar is assigned “\n”
and $next is assigned “A”.

The chomp subroutine, when provided with a scalar variable, removes the last
character from the scalar if, and only if, that character is the newline, ‘“\n”.
Consider this code:

my $dna = "ATGTGCGGTATTGCTGACCTCTTA\n";
my $last = chomp $dna;
# $dna is now "ATGTGCGGTATTGCTGACCTCTTA";

my $next = chomp $dna;

# $dna is still "ATGTGCGGTATTGCTGACCTCTTA";

There is no point in the chomp subroutine returning the character removed,
as it can only ever remove the newline. Instead, chomp returns the number
of characters removed as a result of its invocation. After executing the above
statements, the $1ast scalar has a value of 1, whereas the $next scalar has the
value 0. The $dna scalar has been chomped.

6As if the ability to slurp and clobber were not enough, with Perl we can chop and chomp, too.
Who do we thank for such linguistic frivolity? Larry Wall, the creator of Perl. Larry’s use of such
terminology is enough to make him an honorary Yorkshireman, as such words were in common
use where Michael grew up.



Exercises 119

Where to from Here

Perl’s I/O mechanisms are very convenient and, once mastered, not difficult
to use. Many programmers have extended the in-built mechanisms with cus-
tom modules, which are available on CPAN. A number of standard I/O mod-
ules are included with the Perl environment, and these include IO0::File
and I0::Handle. Take some time to read the documentation describing these
modules.

In addition to the wonder that is CPAN and convenient, easy to use I/0O, there is
one other Perl feature that endears the language to more programmers than any
other language: Perl’s support for regular expressions. Perl’s regular expression,
pattern-matching technology forms the basis of the next chapter.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

e Open a disk-file for as long as needed, but no longer.

o If'you open a disk-file, be sure to close it later.

Exercises

1. Amend the merge2files program to slurp the two disk-files prior to
performing the merge. Does this make the merge any easier?

2. Amend the merge2files program to enable it to merge three disk-files. Call
your new program merge3files.

3. Create a new program, called merge2alpha, that can merge two disk-files
alphabetically. Given a disk-file like this:

a start

is generally not the end
of a disk-file

it’s the start

and another one like this:

the end of a disk-file
usually comes after

the start of a disk-file
but, not always



120 About Files

your program should produce the following output:

a start

but, not always

is generally not the end
it’s the start

of a disk-file

the end of a disk-file
the start of a disk-file
usually comes after

4. Create a program called reverse_it that takes a named disk-file (the input)
and reverses the order of the lines contained therein. The output from this
program is written to a new disk-file (the output), which takes its name from
the inverse of the name of the input disk-file. That is, if the input disk-file is
called “input.data”, the output disk-file should be called “atad. tupni”.



7.1

/

Patterns, Patterns
and More Patterns

Exploiting Perl’s built-in regular expression technology.

Pattern Basics

Earlier in this book, a simple regular expression searched for and found a
collection of characters within an input stream (recall the patterns program on
page 44). At the time, the regular expression details were glossed over, and a
discussion of them was deferred to this chapter.

Before exploring regular expressions, be advised that many people find the
technology strange at first. Work slowly through this chapter, taking time to
understand and learn the technology as it is presented. Regular expressions are
very powerful, in that an awful lot of work results from very little effort on the
part of the programmer. Regular expressions often seem quite cryptic at first,
but persevere: the reward is worth the extra effort required to understand them.
Of course, once understood, you’ll wonder how you ever managed without them.

Technical Commentary: Perl is one of a small, select group of programming lan-
guages that directly embed pattern-matching, regular expression technology into
their core. Some programming languages provide similar technologies as bolted-on,
optional add-ons. However, with Perl, regular expressions are an integral compo-
nent. Programmers often refer to Perl’s regular expression engine, which is the

piece of technology that provides all this, but the engine is not really a separate
component - it’s built-in. It is this feature that defines Perl as much as any other.

What are regular expressions and what’s so special about them?

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 0 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X



7.1.1

7.1.2

122 Patterns, Patterns and More Patterns

What is a regular expression?

From the perspective of a Perl programmer, a regular expression is, first and
foremost, a pattern. The pattern tells perl to look for something, and this
“something” can be any sequence of characters. The patterns program looked
for the word “even” within an input stream using this regular expression:

/even/

Typically, the pattern that makes up a regular expression is enclosed within two
forward-leaning slash characters, as is the case above. It is important to realise
that the pattern is just a sequence of characters to per1. Even though “even” is a
word (for us), it is four individual characters (for per1). Specifically, the pattern
/even/ looks for the character “e”, followed by the character “v”, followed by
the character “e”, followed by the character “n”. When the pattern is compared
against something (such as an input stream or a string), it is said to match if this
sequence of four characters appears. Here are some successful matches to the
/even/ pattern:

eleven # matches at end of word
eventually # matches at start of word
even Stevens # matches twice: an entire word and within a word

And here are some unsuccessful matches (or non-matches):

heaven # ’a’ breaks the pattern

Even # uppercase 'E’ breaks the pattern

EVEN # all uppercase breaks the pattern

eveN # uppercase N’ breaks the pattern

Teave # not even close!

Steve not here # space between ’Steve’ and ’not’ breaks the pattern

Most regular expression technologies (and Perl’s is no exception) are extended by
a collection of special characters, referred to as metacharacters. Metacharacters
influence how the pattern is matched, and are described later.

Technical Commentary: The term “regular expression” is often shortened to
“regex”, and is pronounced “reg”, as in “beg”, and “ex” asin ... well, “x”.

What makes regular expressions so special?

Let’s answer this question with a demonstration. Imagine the requirement to
write a subroutine to find the first occurrence of a pattern, such as “even”, within
a given string. Given the Perl that has been covered thus far, a reasonable strategy
is to approach the problem in the following way (note that before any processing
occurs, per] starts from the beginning of the string to search and has yet to read
any characters from it):



Pattern Basics 123

1. Examine the next character of the string.

2. If the character under consideration is not “e”, return to step 1.

3. If the character under consideration is “e”, consider the next character of
the string.

4. If the character under consideration is not “v”’, go back one character (that
is, back to the found “e”), and return to step 1.

5. If the character under consideration is “v”’, consider the next character of
the string.

6. If the character under consideration is not “‘e”, go back two characters (that
is, back to the first found “e”), and return to step 1.

7. If the character under consideration is “e”, consider the next character of
the string.

8. If the character under consideration is not “n”’, go back three characters
(that is, back to the first found “e”), and return to step 1.

9. If the character under consideration is “n” - rejoice! - a match has been
found.

Using a pencil and some paper, use this strategy to search for the pattern “even”
in the strings “Steven”, “heaven” and “eleven”, convincing yourself that it does
indeed work!.

Now, imagine further that a subroutine called find_it is based on the above
strategy and searches a given string for a given pattern, returning ‘“true” upon
success. The subroutine could be invoked like this:

my $pattern = "even";
my $string = "do the words heaven and eleven match?";

if ( find_it( $pattern, $string ) )

{

print "A match was found.\n";
}
else
{

print "No match was found.\n";
}

Assuming, of course that the subroutine did indeed exist, which it does not. The
reason it does not exist is that no Perl programmer, even the most masochistic,
would ever dream of creating a subroutine such as find_it. Writing such a
subroutine is tedious, tricky and totally unnecessary. The Perl programmer uses
a regular expression, and writes the above code like this:

1
Even though it is not the most efficient strategy. Can you think of an improvement?



7.2

7.2.1

124 Patterns, Patterns and More Patterns

my $string = "do the words heaven and eleven match?";

if ( $string =" /even/ )

{

print "A match was found.\n";
}
else
{

print "No match was found.\n";
}

And then the Perl programmer promptly gets on with whatever else needs doing.
The requirement to write a subroutine to perform the searching is nullified.

The key point is that by using a regular expression, Perl programmers are able
to specify what it is they are interested in finding, without having to spell out
how it should be found. The “how” is left to per1, which performs the search on
the basis of the specified regular expression.

Maxim 7.1 Use a regular expression to specify what you want to find,
not how to find it.

At first glance, many think that this is not such an important thing. However,
finding things in other things is such a common occurrence that any programming
technology that makes it quick and easy is to be welcomed. And the significance
of this for Bioinformaticians should be clear: finding patterns in sequences is a
very big deal indeed!

Simple patterns, such as “even”, are known as concatenations. To concatenate
is to link together or form a sequence of. So, any sequence of characters is a
pattern, specifically a concatenation pattern. There are other types of patterns.
Unlike concatenations, the other types of patterns are associated with a particular
pattern metacharacter.

Introducing the Pattern Metacharacters

In addition to concatenations, patterns can represent repetitions and alternations.
It is also possible to state that a pattern may or may not be there, in that it is
optional.

The + repetition metacharacter

The + metacharacter is read as one or more of. The following regular expression
matches one or more occurrence of the letter “T”:

/T+/



Introducing the Pattern Metacharacters 125

Which matches any of the following:

T
TTTTTT
ol

But does not match any of these:

t

this and that
hello
tttttttttt

Repetitions can be combined with concatenations. This next pattern matches the
letter “e”, followed by the letter “1”, followed by one or more occurrences of the
letter “a’:

/ela+/

In the above example, the repetition is said to bind more closely than the
concatenation, in that only the letter immediately preceding the + symbol is
repeated. So, these strings successfully match the pattern:

elation
elaaaaaaaa

If a requirement exists to bind the repetition to more than one character (i.e.,
to a concatenation), use parentheses to indicate how many characters to repeat.
Consider this regular expression:

/Cela)+/

Now, if the combination of the letter “e”, followed by the letter “1”, followed by
the letter “a” occurs one or more times, there’s a match, as with these strings:

elaelaelaela
ela

This means that the “(” and “)” characters are also metacharacters, which is
fine until a requirement exists to match either of these characters (or any other
metacharacter, for that matter). When such a requirement exists, a metacharacter
can have its special meaning switched off by the use of the \ character (which is
known as escaping). Consider this regular expression:

/\(eTa\)+/



7.2.2

126 Patterns, Patterns and More Patterns

which now matches an opening parenthesis, “(”’, followed by the letter “e”,
followed by the letter “1”, followed by the letter “a”, followed by one or more
occurrences of the closing parenthesis, “)”. So, this string matches:

(eTa)))))
and this does not:

(eTa(ela(ela

The | alternation metacharacter

Another important metacharacter is the vertical bar, |, which indicates alterna-
tion. Alternation offers choice. Here’s an example that matches any one of the
digit characters:

/01112]3]4|516]7]8]9/

That is, the digit O or, alternatively, the digit 1 or, alternatively, the digit 2 or,
alternatively, the digit 3, and so on, up to and including the digit 9 can match.
So, if a single digit occurs anywhere in the string, there’s a match. All of these
strings match (as they all contain at least one digit):

0123456789
there’s a 0 in here somewhere
My telephone number is: 212-555-1029

As can be imagined, looking for any digit is a common requirement, as is trying
to match any single lowercase or uppercase letter. It is possible to match any
lowercase letter with this regular expression:

/alblcldle|f|glh[i[F[k|T|m[nlo|plalr|s|tlu|v|w|x]|y|z/

Just as it is possible to use this regular expression to match any single uppercase
letter:

/AIBICIDIE|F|GIH[T|I[K|LIMIN|O[P|QIR[S|TIU|VIWIX]|Y|Z/

Both seem like an awful lot of work just to match a single character. Perl’s regular
expression shorthand to the rescue!



7.2.3

Introducing the Pattern Metacharacters 127

Metacharacter shorthand and character classes

In order to reduce the amount of work required, Perl provides the character class,
which is a shorthand notation for a long list of alternatives. Rather than using
this regular expression to match any digit:

/0|1]2|3]1415|6|7|8]9/
it is possible to define a character class, which means the same thing, as follows:

/[0123456789]1/

That is, place the digits (or letters or whatever) between the “[”’ and “]” charac-
ters, to indicate a series of alternations. This regular expression:

/[aeiou]/
is exactly the same as this one:
/ale|ilo|u/

Most Perl programmers prefer the character class version of the regular expres-
sion. When the first character of a character class is the = symbol (known as hat),
the character class is inverted. This regular expression:

/["aeioul/

matches any single character that is not one of the five vowels. The "~ character
can be included within a character class as a literal character by positioning it
anywhere but the first position. Ranges can also be specified within character
classes using the - symbol. This character class:

/[0123456789]/
can also be written as:

/[0-91/
which is shorter, more convenient and less prone to a typing error?. As the
letters are also ranges, the long “any letter” regular expressions from earlier in

this section can be rewritten as

/la-z]1/

2
Although we never make any of thsoe ... em, eh, sorry ... those.



7.2.4

128 Patterns, Patterns and More Patterns

which matches any single lowercase letter, and like this:
/[A-Z1/

to match any single uppercase letter. If a requirement exists to match a literal
“-” character, position the dash at the start of the character class:

/[-A-Z1/

The above regular expression now matches for any single uppercase letter or the
dash. Combining character classes defines very specific concatenations. Consider
this regular expression:

/[BCFHST] [aeiou] [mty]/

which matches any three-letter word that starts with an uppercase letter from
the first character class, has a vowel in the middle (the second character class)
and ends in either the letter “m”, “t” or “y” (the third character class). Each of
the following words matches this regular expression:

Bat
Hit
Tot
Cut
Say

while these words do not:

Hog
Can
May
bat

Note the last word, “bat”, which almost matches but does not as regular expres-
sions are case-sensitive. To match words that start with either an uppercase or a
lowercase word, rewrite the regular expression like this:

/[BbCcFfHhSsTt] [aeiou] [mty]/

which now allows for both “bat” and “Bat” to match.

More metacharacter shorthand

The character classes that match any single digit and any single letter (either
lowercase or uppercase) are so common that Perl provides further convenient
shorthand related to them. Rather than using this character class to match any
single digit:

/[0-91/



Introducing the Pattern Metacharacters 129

Perl provides the slash-d shorthand:
/\d/

So, \d means the same as [0-9], and it is easy to remember, as “d” is short for
digit.

When it comes to lowercase and uppercase letters, Perl groups these together
with the digits and the underscore character to form the word character class.
Instead of having to specify this character class:

/[a-zA-Z0-9_1/
all that’s required is Perl’s slash-w shorthand:
/\w/

as both regular expressions mean the same thing. Again, this is easy to remember,
as “w” is short for word.
Another special character class is the slash-s shorthand, where *s” is short for

space. This regular expression:
/\s/

is short for this regular expression:
/L7 \t\n\r\fl/

These characters are generally referred to as the space (or whitespace) characters.
Each of these special character classes3 has an inverted form. To match any
single character that is not a digit, use this regular expression:

/\b/

That is, the “\D” regular expression is “\d” inverted. Likewise, “\W’ is ‘“‘\w”
inverted and “\S” is “\s” inverted.

The beauty of these special shorthands becomes clear when they are seen
in action. Consider a regular expression that must match a digit, followed by
any whitespace character, followed by two word characters and then any other
character that is not a digit. Without the specials, the following regular expression
does the trick:

/[0-91[" \t\n\r\f][a-zA-Z0-9_][a-zA-Z0-9_]["0-9]/

3 . .
Sometimes referred to as the classic character classes.



7.2.5

7.2.6

130 Patterns, Patterns and More Patterns

Here’s the above regular expression rewritten to use the specials:
/\d\s\w\w\D/

Note: less typing, less chance of error and more convenience. As this is such an
important point, here’s a new maxim to drive the message home.

Maxim 7.2 Use regular expression shorthand to reduce the risk of error.

More repetition

Character classes can be combined with the repetition metacharacter to great
effect. This regular expression matches a word of any length:

/\w+/

and is read as one or more word characters. Knowing this, the regular expression
from the last section could be rewritten as:

/\A\s\w+\D/

However, this matches any number of word characters, not exactly two as was the
requirement. Perl provides a facility to match a specific number of occurrences
of something. The { and } metacharacters are used to specify the number of
occurrences to match. Here’s the above regular expression rewritten to match
exactly two word characters, as required:

/\d\s\w{2}\D/

If a requirement exists to match two but not more than four word characters, use
this regular expression:

/\d\s\w{2,43\D/

And finally, if the requirement is to match at least two metacharacters (or
characters) with no upper limit on the number of word characters to match, use
this:

/\d\s\w{2,}\D/

The ? and * optional metacharacters

The optional metacharacters are used to specify that some part of a regular
expression may or may not be there. Consider this example:

/[Bblart?/



7.2.7

Introducing the Pattern Metacharacters 131
which matches any of the following words:

bar
Bar
bart
Bart

That is, the letter “t” is optional. More correctly, Perl programmers read the ?
metacharacter as: match zero or one time. In other words, it is either there or it
is not; it’s optional.

The * metacharacter matches zero or more times. Rewriting the above regular
expression as follows has the effect of matching any number of occurrences of
the letter “t”, including not matching it at all:

/[Bblart*/
Any of the following now match this regular expression:

bar

Bart

barttt
Bartttttttttttttttttttt!!!

Note that even though the last example appends three exclamation marks, there’s
still a match, as regular expressions match anywhere in a string. More on this
behaviour later.

Care is needed when using the * metacharacter. Consider this regular expres-
sion, which always matches successfully:

/p*/

When applied against any string, the p* regular expression always matches, as
the pattern is looking for zero or more occurrences of the letter “p”. If the string
matched against contains a “p”, there’s a match. Equally, if the string does not
contain a “p”, there is also a match! Remember: the * matches zero or more times,

and something - whether it is the letter “p” or anything else, for that matter - is
always not there.

The any character metacharacter

There is often a requirement to match any character, regardless of whether it is
a word, digit or whitespace character. The . metacharacter does just that:

/[Bblar./



7.3

7.3.1

132 Patterns, Patterns and More Patterns

The use of the any character metacharacter allows the above pattern to success-
fully match any of these strings®:

barb

bark
barking
embarking
barn

Bart
Barry

Appending the ? optional metacharacter to the pattern, thus:
/[Bblar.?/

allows words such as “bar” and “Bar” also to match .

Anchors

The last example from the last section highlights, once again, the fact that
the match is successful if the pattern is found anywhere in the string under
consideration. Note that “bark”, “barking” and “embarking” are all successful
matches. This can often result in patterns matching when they were not expected
to, which can sometimes be a surprise. But what if a requirement exists to match
an entire word, such as “bark”, but not match “barking” and “embarking” (as the
word “bark” is embedded in them)?

The word boundary metacharacters allow a regular expression to be anchored
at a word boundary - that is the space between a word and something else, which
is defined in Perl as the position between “\w” and ‘“\W”.

The \b word boundary metacharacter

To match an entire word, surround the word to be matched with the \b word
boundary metacharacter, as follows:

/\bbark\b/
This string now successfully matches:
That dog sure has a loud bark, doesn’t it?
as the word “bark” is surrounded by word boundaries, whereas it does not match:

That dog’s barking is driving me crazy!

4 ) . .
The temptation to use the letter “f” in this example was great, but you’ll be glad to know we
resisted.



7.3.2

7.3.3

Anchors 133

The \b metacharacter has an inverse in \B, which matches at any position that is
not a word boundary. Note that this regular expression:

/\Bbark\B/
matches “embarking” but not “bark” or “barking”.

The ~ start-of-line metacharacter

To anchor the regular expression to the start of a string (or line), use the ~
metacharacter:

/"Bioinformatics/

which states that a successful match to a string must begin with the word
“Bioinformatics”, as follows:

Bioinformatics, Biocomputing and Perl is a great book.

The next string does not match, as the match cannot be made at the start of the
string:

For a great introduction to Bioinformatics, see Moorhouse, Barry (2004).

The $ end-of-line metacharacter

To anchor the regular expression to the end of a string (or line), use the $
metacharacter:

/Perl$/
which matches successfully with this string:
My favourite programming language 1is Perl
but not this one:
Is Perl your favourite programming language?
A common regular expression to match against a blank line is:
/"$/

That is, the line has a start, an end and nothing between the two: it’s blank.



134 Patterns, Patterns and More Patterns

7.4 The Binding Operators

Consider this simple program, called simplepat:
#! /usr/bin/perl -w
# The ’simplepat’ program - simple regular expression example.

while ( <> )
{
print "Got a blank Tine.\n" if /°$/;
print "Line has a curly brace.\n" if /[}{1/;
print "Line contains ’program’.\n" if /\bprogram\b/;

}

The simplepat program keeps reading lines of input from STDIN until there are
no more lines to read. As per1 has not been told otherwise, the line is assigned
to the default scalar, $_. Three print statements form the body of the loop,
with each statement qualified with an if conditional statement. Each of the if
statements tries to match to a specific regular expression®.

Let’s execute the simplepat program, specifying the program’s disk-file as the
input to the program, with this command-line:

perl simplepat simplepat
Here’s the output produced by the above command-line:

Got a blank 1ine.

Line contains ’program’.
Got a blank Tine.

Line has a curly brace.
Line has a curly brace.
Line contains ’program’.
Line has a curly brace.

This program demonstrates that in the absence of any named scalar, per1 uses
$_as the thing to match against. If a match is successful, per1 returns true to the
program. The simplepat program exploits this behaviour in each of its print

statements.
It is often the case that the thing to match against is the value of some scalar
variable, not $_. The binding operator, written as =", is used to tell perl that a

regular expression is to be applied (or bound) to a named scalar. For example,
this statement:

if ( $1ine =~ /°$/ )

5
The meaning of each should be clear. If they are not, you are advised to go back to the
beginning of this chapter and start again.



7.5

Remembering What Was Matched 135

checks to see if the $11ine scalar contains a blank line. In addition to =", there’s
also a not binding operator, ! ~, which is the logical negation of =". This statement:

if ( $1ine 7 /7°$/ )

checks to see if the $11ine scalar contains anything other than a blank line. The
binding operators are very useful, but really come into their own when combined
with grouping parentheses.

Remembering What Was Matched

The grouping parentheses were introduced earlier, when they were used to group
a number of letters together so that they could be repeated:

/(ela)+/

It wasn’t mentioned then, but when the parentheses are used to group in this way,
per1 remembers the value that matched that part of the regular expression, often
referred to as a subpattern. For each set of parentheses, per1 creates a special
scalar variable to hold what matched. These special variables, often referred to
as the after-match variables, are numbered upward from 1.

Here’s a small program, called grouping that demonstrates how the after-
match variables are used:

#! /usr/bin/perl -w
# The ’grouping’ program - demonstrates the effect of parentheses.

while ( my $Tine = <> )

{
$Tine =" /\w+ Qw+) \w+ Q\w+)/;
print "Second word: '$1’ on Tine $..\n" if defined $1;
print "Fourth word: '$2’ on Tine $..\n" if defined $2;
}

Each line read into this program is assigned to the $T1ine scalar, which is then
bound against a regular expression. The pattern looks for a word, \w+, a space,
another word that is to be remembered (note the use of parentheses), another
space, another word, another space and another remembered word5.

After a successful pattern match, the two remembered values are automatically
assigned by per1 to the special scalars $1 and $2. The print statement displays

As you can see, it is often easier to write a regular expression using shorthand than it is to
actually describe it in words.



136 Patterns, Patterns and More Patterns

what was found. Note the use of if defined, which ensures output is generated
only as aresult of a successful match. Note, too, the use of the “$.” scalar, another
internal Perl scalar, which contains the current line number of the input file being
processed. Given the following input data (contained in the test.group.txt
data-file):

This is a sample file for use with

the grouping program that is included

with the Patterns

Patterns and More Patterns chapter

from Bioinformatics, Biocomputing and Perl.

the following command-line:

perl grouping test.group.data

produces the following results:

Second word: ’is’ on Tine 1.
Fourth word: ’sample’ on Tine 1.
Second word: ’grouping’ on line 2.
Fourth word: ’that’ on line 2.
Second word: ’and’ on line 4.
Fourth word: ’Patterns’ on Tline 4.

There is no match on line 3 as there are only three words on that line, and the
regular expression is trying to match four words (two of which are remembered).
Line 5 does not match either, as the regular expression does not take into
consideration the comma. Note the program is able to use the values that were
remembered.

It is possible to nest parentheses. Consider this version of grouping, which
has the rather imaginative name grouping2:

#! Jusr/bin/perl -w
# The ’grouping2’ program - demonstrates the effect of more parentheses.

while ( my $1line = <> )

{
$line =7 A\w+ (Qw+) \w+ Qw+))/;
print "Three words: ’$1’ on 1line $..\n" if defined $1;
print "Second word: '$2’ on line $..\n" if defined $2;
print "Fourth word: ’$3” on 1line $..\n" if defined $3;
}

which when executed against the test.group.txt data-file produces the follow-
ing output:



7.6

Greedy by Default 137

Three words: ’is a sample’ on Tine 1.

Second word: ’is’ on line 1.

Fourth word: ’sample’ on Tine 1.

Three words: ’grouping program that’ on Tine 2.
Second word: ’grouping’ on Tine 2.

Fourth word: ’that’ on line 2.

Three words: ’and More Patterns’ on line 4.
Second word: ’and’ on line 4.

Fourth word: ’'Patterns’ on line 4.

When working with nested parentheses, count the opening parentheses, starting
with the leftmost, to determine which parts of the pattern are assigned to which
after-match variables. That last sentence is worth another maxim:

Maxim 7.3 When working with nested parentheses,
count the opening parentheses, starting with the leftmost,
to determine which parts of the pattern
are assigned to which after-match variables.

Greedy by Default

Consider this regular expression:
/(C.+), Bart/

matched against this string:

Get over here, now, Bart! Do you hear me, Bart?

The pattern matches one or more of any character, .+, a literal comma, a space
character, then the word “Bart”. The parentheses ensure that anything matched
by .+ is remembered in the $1 after-match variable. After performing the match,
$1 contains this string:

Get over here, now, Bart! Do you hear me

This may come as a bit of a surprise, as it would be reasonable to think that
the match succeeds when the first “Bart” is encountered, not the second. A
reasonable assumption indeed, but incorrect. By default, per1 performs greedy
matching, in that an attempt is always made to match as much of the string as
possible, that is, the longest possible match. To specify that non-greedy (or lazy)
matching should be applied to part of the regular expression (or subpattern),
qualify it with the ? character:

/(.+?), Bart/



7.7

138 Patterns, Patterns and More Patterns

Note that the ? character when used in this way does not mean optional. It means
non-greedy. Rather than match as much as possible, this part of the regular
expression now matches as little as possible. When matched against the string
from earlier, this non-greedy regular expression remembers the following value
in the $1 after-match variable:

Get over here, now

In addition to the use of the ? non-greedy qualifier with the + metacharacter, it
can also be used with the * and ? metacharacters. It can also be used with the {x]},
{x,y}and {x,} repetition specifiers (where “x” and “y” specify the minimum and
maximum number of matches, respectively). Being able to control when per]1 is
and is not greedy is important.

Alternative Pattern Delimiters

The use of the / character as a regular expression delimiter suffices for most
needs. However, consider writing a regular expression to match against a string
like this:

/usr/bin/perl
It is not possible to write the regular expression as follows:
//\w+/\w+/\w+/

as per1 will treat the second / character as the end of the pattern and ignore the
\w+/\w+/\w+/ bit. Whoops! It is possible to escape the / characters that are part
of the pattern:

VAVA\ G AVAN SAVAN' T4

to ensure that the leftmost and rightmost / characters are treated as pattern
delimiters. Unfortunately, the pattern is now harder to read and understand, and
it gets worse when each of the matched words is remembered:

/N QwH N/ QwH)\/ Qw+) /

In situations such as this, Perl allows alternative delimiters to be specified, where
the delimiter character is drawn from the set that includes any non-alphabetic,
non-whitespace character. To use an alternative delimiter, prefix the regular
expression with the letter “m” to signify the start of the pattern. The above
escaped example regular expression can be rewritten as:

m#/\w+/\w+/\w+#
or if the matched words are to be remembered:

m#/ Qw+) / Qw+) / Q\w+) #



7.8

Another Useful Utility 139

There is now no confusion as to the inclusion of the / characters within the
regular expression: they are to be treated literally, not as delimiters.

Other common delimiter characters include !, |, , and :. It is also possible to
use any of the following bracket-pairings as delimiters:

m{ }
m< >
ml ]
mC )

As the use of the “m” prefix signifies the start of a pattern, it is possible to use it
with the standard delimiter characters:

/even/

is the same (and can be written) as:

m/even/

However, as the use of the “m” prefix is implied when used with /, the majority
of Perl programmers omit it.

Another Useful Utility

Let’s extend the UsefulUtils module from the Getting Organised chapter to
include a subroutine that relies on a regular expression to get its work done.
Later in this book, a subroutine is required to convert from one date format to
another. A date in DD-MMM-YYYY format needs to be converted to YYYY-MM-DD
format. Here’s a subroutine, called biodb2mysql, that performs the conversion:

sub biodb2mysql {
#
# Given: a date in DD-MMM-YYYY format.
# Return: a date in YYYY-MM-DD format.
#
my $original = shift;
$original =" /(\d\d)- QAw\w\w) - \d\d\d\d)/;

my ( $day, $month, S$year ) = ( $1, $2, $3 );

$month = 01’ if $month eq ’JAN’;
$month = ’02’ if $month eq ’FEB’;
$month = ’03’ if $month eq ’MAR’;
$month = 04’ if $month eq ’APR’;
$month = ’05’ if $month eq ’MAY’;



7.9

140 Patterns, Patterns and More Patterns

$month = 06’ if $month eq *JUN’;
$month = ’07’ if $month eq ’JUL’;
$month = ’08’ 1if $month eq ’AUG’;
$month = 09’ if $month eq ’SEP’;
$month = 10’ if $month eq ’OCT’;
$month = ’11° if $month eq ’NOV’;
$month = ’12° if $month eq ’DEC’;
return $year . -’ . $month . ’-’ . $day;

¥

As this subroutine only ever expects a single parameter, there’s no need to go to
the trouble of supporting named parameters. Any parameter supplied is assigned
to the $original lexical variable by invoking shift. For the purposes of this
discussion, the key statements are these:

$original =" /(\d\d) - QAw\w\w) - \d\d\d\d) /;
my ( $day, $month, $year ) = ( $1, $2, $3 );

The value of $original is matched against a regular expression that looks for two
digits, followed by a dash, followed by three word characters, followed by another
dash, followed by four digits. Three sets of parentheses ensure that the $1, $2 and
$3 after-match variables remember the values matched by each subpattern. The
three after-match variables are then assigned (as a list) to the $day, $month and
$year lexicals. The rest of the subroutine performs the conversion and returns
the converted date string. Note that the regular expression could just as easily
be written as follows:

/A\d{2D)-Aw{3})-(\d{4})/

As always with Perl, there’s more than one way to do it. However, owing to
greediness considerations, it would be considered dangerous to write the regular
expression like this:

/A\dH) -Qw+) -(\d+) /

Substitutions: Search and Replace

In addition to the match operator (m//), Perl supports the substitution operator
(s///) as part of its regular expression technology. Unlike the match operator,
which surrounds the regular expression with a pair of delimiters, the substitution
operator adds a third. The pattern to search for is delimited by the first two /
characters, while the string to use as a replacement is delimited by the last two
/ characters. Here’s an example that searches for a simple concatenation and
replaces it with another:

s/these/those/



7.9.1

Substitutions: Search and Replace 141

By default, the substitution stops replacing after the first successful match. So, if
a string has this value:

Give me some of these, these, these and these. Thanks.
the substitution as shown above transforms the string into this:
Give me some of those, these, these and these. Thanks.

If a requirement exists to search for and replace all occurrences of a pattern,
the behaviour of the substitution can be modified with a trailing “g”. This is the
global modifier”, and it is used as follows:

s/these/those/g

When applied to the string, a global search and replace is performed, resulting in
this string:

Give me some of those, those, those and those. Thanks.

Another important modifier is the ignore case modifier, which matches regardless
of case. Modifiers can be combined, so if the substitution is:

s/these/those/qgi

any of the following words would match: “these”, “These”, “THESE”, “ThESE”
and so on. That is, the capitalisation and case of the string are ignored.

Substituting for whitespace

A common use for the substitution operator is to remove unwanted whitespace
from a scalar. This regular expression removes any leading whitespace:

s/ \s+//
while this substitution removes any trailing whitespace:
s/\s+$//

One final variation compresses (or collapses) any number of whitespace charac-
ters into a single space character:

s/\s+/ /g

Note the use of “g”, the global modifier.

7. . . . S L
This can be applied to any regular expression, not just substitutions. This is true of most
modifiers.



7.10

142 Patterns, Patterns and More Patterns

Finding a Sequence

Let’s conclude this chapter with a complete example that demonstrates a real-
world usage of regular expressions.

The data for this example is taken from the EMBL Nucleotide Sequence
Database8, is identified as ID AF213017 and is described as: Acinetobacter cal-
coaceticus KHP18 partial pKLHZ2 plasmid including aberrant mercury resistance
transposon TnPKLHZ2, truncated insertion sequence IS1011.D1 and determinants
for CinH resolution system. The data contained in the EMBL database associated
with this entry looks like this:

gccacagatt acaggaagtc atatttttag acctaaatca ctatcctcta tctttcagca 60
agaaaagaac atctacttgg tttcgttccc tatccaagat tcagatggtg aaacgagtga 120
tcatgcacct gatgaacgtg caaaaccaca gtcaagccat gacaaccccg atctacagtt 180
gcatctgtct gtatccgcaa cctaaaatca gtgctttaga agccgtggac attgatttag 6660
gtacgtgtag agcaagactt aaatttgtac gtgaaactaa aagccagttg tatgcattag 6720
ctttttcaat ttgtataacg tataacgtat ataatgttaa ttttagattt tcttacaact 6780
tgatttaaaa gtttaagatt catgtattta tattttatgg ggggacatga atagatct 6838

There is a readily identifiable pattern here. Each line starts with some whitespace.
The sequence data is then presented in groups of up to ten letters (with up to six
groups on a line) and the line ends with a count of the size of the sequence up to
that point.

The real-world requirement is to take any arbitrary sequence and determine
if it appears within the sequence as extracted from the EMBL database. This is
complicated by the fact that the sequence is presented as a group of ten-letter
strings over multiple lines, as opposed to one single stringed sequence on one
line. If the sequence data was on one line, and contained in a scalar called
$sequence, a line of code similar to this:

if ( $sequence =" /acttaaatttgtacgtg/ )

would do the trick. Unfortunately, the sequence data is presented as groups of
ten-letter strings over multiple lines, as opposed to one single stringed sequence
on one single line. All of those spaces complicate things somewhat and need to
be removed if there is to be any chance of matching a sequence that is greater
than ten letters in length. Even if the matching sequence is less than ten letters
long, it may fail if the spaces remain, as part of the matching sequence may
match the end of one group and continue into the next (or worse still, straddle
two separate lines). Look closely at the sample data, above, for examples of these
problems.

Rather than try to solve all of the challenges posed by this example in one go,
let’s deal with each one at a time. The only assumption made is that the sequence

8
We cover this in detail later.



Finding a Sequence 143

data has been extracted from the EMBL database entry and stored in a data-file
called emb1.data’.

Removing the number at the end of each line is accomplished with the following
substitution:

s/\s*\d+$//

The regular expression matches zero or more whitespace characters (\s*), fol-
lowed by one or more digits (\d+) positioned at the end of the line ($). When it is
found, it is replaced with nothing, that is, removed.

Removing the unwanted spaces within a line involves another substitution,
which looks for any amount of whitespace (\s*) and replaces it with nothing:

s/\s*//g

Note the use of the global modifier, which ensures all space characters are
removed. Let’s use these two substitutions within a program, called pre-
pare_embl:

#! /usr/bin/perl -w
# The ’prepare_embl’ program - getting embl.data ready for use.

while ( <> )

{
s/\s*\d+$//;
S/\S*//g;
pri nt;

}

The two substitutions are performed on each line that is read in. In the absence
of a named variable, the line is assigned to the $_ default variable. After the two
substitutions have been performed, the adjusted line is printed to STDOUT. Use
this command-line to process the emb1.data disk-file, and redirect STDOUT to
another data-file, producing emb1.data.out:

perl prepare_embl embl.data > embl.data.out

Use the Linux wc utility to request some statistics on the newly created disk-file:
wc embl.data.out

which produces the following results:

0 1 6838 embl.data.out

9
Available for download from the Bioinformatics, Biocomputing and Perl web-site.



144 Patterns, Patterns and More Patterns

The wc utility reports that the newly created disk-file contains 6838 characters.
This matches the total at the end of the extracted EMBL database entry, so
it appears as if the entire sequence has been processed. Interestingly, wc also
reports that the disk-file contains a single line. This is an interesting, and
somewhat pleasing, side effect of executing the prepare_emb1 program.

With the sequence now stored as a single line of data in the emb1.data.out
data-file, it is a relatively straightforward exercise to produce a small program
to check arbitrary sequences against the EMBL database entry. This program is
called match_emb1:

#! Jusr/bin/perl -w

# The ’match_embl1’ program - check a sequence against the EMBL
# database entry stored in the
# embl.data.out data-file.

use constant TRUE => 1;

open EMBLENTRY, "embl.data.out"
or die "No data-file: have you executed prepare_emb1?\n";

my $sequence = <EMBLENTRY>;

close EMBLENTRY;

print "Length of sequence 1is: ", length $sequence, characters.\n";

while ( TRUE )

{
print "\nPlease enter a sequence to check.\nType ’quit’ to end: ";
my $to_check = <>;
chomp( $to_check );
$to_check = 1c $to_check;
if ( $to_check =" /"quit$/ )
{
Jast;
}
if ( $sequence =" /$to_check/ )
{
print "The EMBL data extract contains: $to_check.\n";
}
else
{
print "No match found for: $to_check.\n";
}
}

Let’s review a sample usage session with this program. Execute the match_emb]1
program with this command-line:

perl match_embl



Finding a Sequence 145

Here’s a captured usage session, showing the messages produced and the input
provided by the user (which is shown in italics):

Length of sequence is: 6838 characters.

Please enter a sequence to check.
Type ’'quit’ to end: aaatttgggccc
No match found for: aaatttgggccc.

Please enter a sequence to check.
Type 'quit’ to end: acttaaatttgtacgtg
The EMBL data extract contains: acttaaatttgtacgtg.

Please enter a sequence to check.
Type 'quit’ to end: TATCATGAT
No match found for: tatcatgat.

Please enter a sequence to check.
Type ’'quit’ to end: accttaaatttgtacgtg
No match found for: accttaaatttgtacgtg.

Please enter a sequence to check.
Type ’'quit’ to end: cagcaagaaaa
The EMBL data extract contains: cagcaagaaaa.

Please enter a sequence to check.
Type ’quit’ to end: caGGGGGgg
No match found for: caggggggg.

Please enter a sequence to check.
Type 'quit’ to end: tcatgcacctgatgaacgtgcaaaaccacagtcaagccatga
The EMBL data extract contains: tcatgcacctgatgaacgtgcaaaaccacagtcaagccatga.

Please enter a sequence to check.
Type ’'quit’ to end: quit

Even on a relatively slow computeri?, the matching occurs in the blink of an eye.
Imagine how long this matching would take to do by hand!

Rather than describe the workings of the match_embl program in detail, it
is left as an exercise for the reader to work out what is going on. At this
stage in the book, most of what you need to know has already been cov-
ered. Attention is drawn to the use of the in-built Tc subroutine, which takes
a scalar variable and converts it to lowercase, returning the lowercase ver-
sion to the caller. Note also the use of the $to check scalar as the regular
expression against which to match. The value of the scalar is used as the
regular expression against which to match and, in this case, it is a concatena-
tion.

10
By the standard of the day (Summer 2003). The match_emb1 program was tested on a “slow”
Pentium III.



146 Patterns, Patterns and More Patterns

Where to from Here

Perl’s regular expression technology is often referred to as a programming
language within a programming language. This is a cute sound bite. However, it
masks the fact that the integration of a full-featured regular expression engine
into the core of Perl is what makes it the programming language it is. There is a
lot more to regular expressions than described in this chapter, which presented
the core technology to whet your appetite. The Suggestions for Further Reading
appendix contains pointers to more thorough treatments. As can be expected,
example uses of Perl’s regular expression technology appear throughout the
remainder of Bioinformatics, Biocomputing and Perl.

The Maxims Repeated
Here’s a list of the maxims introduced in this chapter.

e Use a regular expression to specify what you want to find, not how to find it.
e Use regular expression shorthand to reduce the risk of error.

o When working with nested parentheses, count the opening parentheses, start-
ing with the leftmost, to determine which parts of the pattern are assigned to
which after-match variables.

Exercises

1. Work through the perlretut documentation included with Perl, trying out
each of the example regular expressions as they are presented. This is a
large document that will take some time to read. Pay particular attention to
the regular expression example that matches DNA stop codons.

2. In addition to Perl, many other programs and tools utilise regular expres-
sions in interesting ways. One such tool (included with Linux) is grep,
the “generalised regular expression parser”, which can be used to search
for a pattern within any selection of disk-files. Read the manual page for
grep to learn how to use it, then use grep to search for the existence of
arbitrary sequences in the emb1.data.out disk-file. [Be advised that upon
success and by default, grep prints the matching line to STDOUT. Check
the options, documented in the manual page, to learn how to change this
default behaviour.]



8.1

8.2

8
Perl Grabbag

Some useful bits ‘n’ pieces that every Perl programmer should
know.

Introduction

Rather than discuss a specific topic or feature of Perl in detail, this chapter
presents a collection of Perl topics. There’s much more to Perl than what’s been
covered so far in this book and, even when this chapter is worked through, there’s
still more Perl to learn. However, the core of the language has been covered and,
as demonstrated in the rest of Bioinformatics, Biocomputing and Perl, this core is
more than enough to perform a varied number of programming tasks vital to the
work of Bioinformaticians.

Strictness

Perl is often considered too loose a programming language to be taken seriously
by “real” computing folk. True, in its own unique way, Perl happily breaks a
number of the “golden rules” of the traditional programming language. For
instance, Perl allows variables to be used before they are declared, magically
assigning default values to variables and then making them immediately available
to the program within which they appear. The same goes for subroutines: they
can be invoked before they are defined. And then there are those sticky global
variables: everything is a global by default!.

1 . . . . .
Many a computer scientist considers this to be an unspeakable sin.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 0 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X



148 Perl Grabbag

As described in Chapter 5, the use of my variables turns a global variable into
a lexical. By default, the use of my variables is optional. However, it is possible to
have per1 insist on the use of my variables, making their use mandatory.

This insistence is referred to as strictness, and is switched on by adding this
line to the top of a program:

use strict;

This is a directive that, among other things, tells per1 to insist on all variables
being declared before they are used?, as well as requiring that all subroutines be
declared (or defined) before they are invoked.

Why do such a thing? Why restrict the programmer, when Perl is all about
freedom? The answer has to do with scale. As programs get bigger, they become
harder to maintain. The use of use strict helps keep things organised and
reduces the risk of errors being introduced into programs. And anything that
helps reduce errors is a good thing, even if it is sometimes inflexible. Think of
the use strict directive as a gentle reminder to take the time to limit the scope
of any variables used in a program. Thinking about the scope of variables, and
using my and our to control the visibility of variables, really becomes important
as a program grows in size.

When strictness is enabled, per1 takes the time to check the declaration of
each of a program’s variables before execution occurs. Consider this program,
called bestrict:

#! /usr/bin/perl -w

# bestrict - demonstrating the effect of strictness.
use strict;

$message = "This is the message.\n";

print $message;

Note that the $message scalar is not declared as a lexical (my) or global (our)
variable. When an attempt is made to execute the bestrict program, perl
complains loudly that the strictness rules have been broken:

Global symbol "$message" requires explicit package name at bestrict Tine 7.

Global symbol "$message" requires explicit package name at bestrict Tine 9.
Execution of bestrict aborted due to compilation errors.

These “compilation errors” are fixed by simply declaring the $message scalar as
a my variable, thus:

my $message = "This is the message.\n";

2. .
Either as a my or our variable.



8.3

Perl One-liners 149

which really isn’t that big a deal, is it? As a program grows in size (and,
consequently, complexity), the benefits of switching on strictness far outweigh
the disadvantage (and perceived inconvenience) of having to declare all variables
with either my or our.

Defining all subroutines at the top of a program ensures that perl sees
them before they are invoked. However, as discussed earlier in this book, the
placement of subroutines is a personal preference: some programmers place
them near the top, others near the bottom, while others place subroutines at any
location within a program’s disk-file. The use of use strict forces programmers
to place subroutines near the top of their programs. Something that “forces”
programmers to behave in a particular way is decidedly ‘“unperlish” and inflexible.

To retain the flexibility of being able to place subroutines anywhere in a
program’s disk-file, while still taking advantage of the use strict directive,
Perl provides the use subs directive that can be used in combination with use
strict to declare a list of subroutines at the top of a program. Subroutine
definitions can then appear anywhere in a program’s disk-file. Here’s an example:

use strict;
use subs qw( drawline biodb2mysql );

The use subs directive declares a list of subroutine names that are later defined
somewhere in the program’s disk-file.

Although the Perl documentation advises the use of use strict for everything
but the most “casual” of programs, your authors’ advice is, well, more strict:
always use use strict.

Maxim 8.1 Unless you have a really good reason not to,
always switch on strictness at the top of your program.

It is left as an exercise for the reader to think up a really good reason for not
using use strict.

Perl One-liners

Most of the example programs seen thus far in Bioinformatics, Biocomputing and
Perl start with the following line:

#! /usr/bin/perl -w

The -w switch is one of a large collection of directives that can be provided to
perl on the command-line3. The “w” stands for “warnings”, and instructs per1
to warn the programmer when it notices any dubious programming practices

3
Refer to the per1run manual page, included with Perl, for all the gory details.



150 Perl Grabbag

(such as defining a subroutine twice). It is always a good idea to switch on
warnings, as it makes for better programs.

When discussing the installation of third-party CPAN modules during Chapter
5, the -e switch was used to check that the module had installed correctly, as
follows:

perl -e ’use ExampleModule’

The “e” stands for “execute”, and instructs perl to execute the program state-
ments included within the single quotes. Here’s another example command-line:

",

perl -e ’print "Hello from a Perl one-Tiner.\n";

The ability to use the -e switch on the command-line in this way creates what’s
known in the Perl world as a one-liner. That is, a single line of Perl code is
provided to per1 to execute immediately from the command-line. Here’s another
one-liner that turns per1 into a simple command-line calculator:

perl -e ’printf "%0.2f\n", 30000 * .12;’

which calculates 12% of 30,000 and displays the result (3600.00). The printf
subroutine is a variant of the more common print, and prints to a specified
format. Use these commands to learn more about printf and formats:

perldoc -f printf
perldoc -f sprintf

Another useful switch is -n, which, when used in combination with -e, treats the
one-liner as if it is enclosed with a loop. Consider this one-liner:

perl -ne ’print if /ctgaatagcc/;’ embl.data

which is equivalent to the following program statements:

while ( <> )
{

¥

print if /ctgaatagcc/;

That is, the code between the single quotes (the one-liner) is equivalent to
the above loop. The emb1.data part of the command-line is just that: part of
the command-line, not part of the one-liner. When the one-liner is executed, the
following output is generated:

attgtaatat ctgaatagcc actgattttg taggcacctt tcagtccatc tagtgactaa 5880



Perl One-liners 151

as there’s a match. Of course, for those readers who took the time to complete
the exercises from the last chapter?, they already know that there’s an easier way
to do this using the grep utility:

grep ’'ctgaatagcc’ embl.data

which produces output identical to that produced by the one-liner. Note: less
typing, less risk of error.

When the -n switch is combined with -p, the loop has a print statement added
to the end. Here’s a one-liner that prints only those lines from the emb1.data
disk-file that do not end in four digits:

perl -npe ’last if /\d{4}$/;’ embl.data

When executed, the following output is produced:

gccacagatt acaggaagtc atatttttag acctaaatca ctatcctcta tctttcagca 60
agaaaagaac atctacttgg tttcgttccc tatccaagat tcagatggtg aaacgagtga 120
tcatgcacct gatgaacgtg caaaaccaca gtcaagccat gacaaccccg atctacagtt 180
tgatgttgaa actgccgatt ggtacgccta cagtgaaaac tatggcacaa gtgaagaaaa 240
acgctttgtt aagtttgttg caactcaaat tgacgagctt aaatcacgct acaagggtgc 300
agagatttac ctgatacgga atgaactcga ttattggttg tttagcccta aagatggtcg 360
tagattcagc cctgactaca tgctgatcat taatgatgct gaaaatagtg aaatgtacta 420
tcaatgctta attgagccta aaggtggtca tttgcttgaa aaggatactt ggaaagagga 480
agtattgatt agtttggatg atgaaagcca aattgttttt gatgcagatc aagatgattc 540
acaaaactat gttgagttct taaatgaagt taaagagcat ggttataagg aagttaaatg 600
tttaggcttc aaattctaca ataccgaacc acgatctgaa tcagattttg ctattgattt 660
tcacaatagg atgccgagtt aatctaggtt tctcactgta acctgctgat tattatcttt 720
ttgtgaagtt gctacataat attgttttta agatcattga ataaaaaagc cagctctata 780
ctggcttttt tattgcttaa aattatattc cgatgcttgg tcaaaactgc aagtatgcag 840
tcttgaccag gcatctaggg gtcgtctcag aattcggaaa ataaagcacg ctaaggcgta 900
gtcaccccgt gactcccccg cgccgatgca gcgagcttcg ttccgtcttg cagtgacgca 960

The above one-liner is equivalent to this program:

while ( <> )
{

}
continue {
print $_;

Tast if /\d{4}$/;

}

The one-liner is a little harder to do with grep. Your authors came up with this
grep equivalent”:

grep -v ’[0123456789]1[0123456789]1[0123456789][0123456789]1%’ embl.data

4
You mean to say you didn’t do the exercises?!? Quick: go back and do them now, before we
ask again.

” This can probably be improved, depending on the version of grep available to you.



8.4

152 Perl Grabbag

Note: more typing for the grep equivalent this time. The Perl one-liner involves
less typing and, consequently, less risk of error.

Running Other Programs from perl

Another feature that helps maintain Perl’s prominent position as a “glue lan-
guage” is its ability to execute other programs. There are two main ways to
do this:

1. By invoking the program in such a way that after execution, the calling
program can determine whether the called program successfully executed.

2. By invoking the program in such as way that after execution, any results
from the called program are returned to the calling program.

Perl’s in-built system subroutine behaves as described in point 1 above, while
Perl’s backticks and gqx// operator behave as described in point 2.

Here’s an example program, called pinvoke, that demonstrates each of these
mechanisms by invoking the Linux utility program, 1s, that lists disk-files in the
current directory®:

#! /usr/bin/perl -w

# pinvoke - demonstrating the invocation of other programs
# from Perl.

use strict;
my $result = system( "Is -1 p*" );
print "The result of the system call was as follows:\n$result\n";
$result = ‘1s -1 p**;
print "The result of the backticks call was as follows:\n$result\n";
$result = gqx/1s -1 p*/;
print "The result of the gx// call was as follows:\n$result\n";
The invocation of system results in the 1s program executing. Any output from

1s is displayed on screen (STDOUT) as normal (as that’s what 1s does), then, as
1s executed successfully, a value of zero is returned to pinvoke and assigned to

6
Specifically, this invocation of the 1s program lists, in long format, any disk-file whose name

starts with the letter “p”.



8.5

Recovering from Errors 153

the $result scalar. The $result scalar is then printed to STDOUT as part of an
appropriately worded message. If the 1s program fails, the $result scalar is set
to —1.

Perl’s backticks (“and ) also execute external programs from within Perl. Unlike
system, the results from the program are captured and returned to the program.
In the pinvoke program, the results are assigned to the $result scalar, and then
printed to STDOUT as part of an appropriately worded message.

The gx// operator is another way to invoke the backticks behaviour: it works
exactly the same way as backticks, which is confirmed by the output produced
by the pinvoke program (as shown and discussed below).

Note that the pinvoke program enforces strictness, requiring the programmer
to declare any variables as lexicals. There is only one, $result, which is declared
as a my variable. When executed, the pinvoke program produces the following
output:

-rw-rw-r-- 1 barryp barryp 403 Aug 16 16:48 pinvoke
-rw-rw-r-- 1 barryp barryp 145 Aug 7 12:36 prepare_embl
-rw-rw-r-- 1 barryp barryp 422 Jul 22 15:10 private_scope
The result of the system call was as follows:

0

The result of the backticks call was as follows:

-rw-rw-r-- 1 barryp barryp 403 Aug 16 16:48 pinvoke
-rw-rw-r-- 1 barryp barryp 145 Aug 7 12:36 prepare_embl
-rw-rw-r-- 1 barryp barryp 422 Jul 22 15:10 private_scope
The result of the gx// call was as follows:

-rw-rw-r-- 1 barryp barryp 403 Aug 16 16:48 pinvoke
-rw-rw-r-- 1 barryp barryp 145 Aug 7 12:36 prepare_embl
-rw-rw-r-- 1 barryp barryp 422 Jul 22 15:10 private_scope

Note that the first invocation of Ts results in the production of the first three
lines on STDOUT, which are produced before the appropriately worded message
(which is produced by pinvoke, not 1s).

It is also possible to invoke a disk-file containing Perl code from within a Perl
program. Use Perl’s in-built do subroutine.

Recovering from Errors

It is not always appropriate to die whenever an error occurs. Sometimes it makes
more sense to spot, and then recover from, an error. This is referred to as
handling exceptional cases, or exception handling. Consider the following code:

my $first_filename = "itdoesnotexist.txt";

open FIRSTFILE, "$first_filename"
or die "Could not open $first_filename. Aborting.\n";



154 Perl Grabbag

When executed, the above code produces the following message:

Could not open itdoesnotexist.txt. Aborting.

This assumes that the i tdoesnotexist. txt disk-file does not exist. The program
terminates as a result of the invocation of die. It is possible to protect this code
by enclosing it within an eval block.

The in-built eval subroutine takes a block of code and executes it (or evaluates
it). This is exactly what per1 does to code. When per1 invokes eval, anything
that happens within the eval block that would usually result in a program
terminating’ is caught by per1 and does not terminate the program. Here’s the
above code surrounded by an eval block:

eval {
my $first_filename = "itdoesnotexist.txt";

open FIRSTFILE, "$first_filename"
or die "Could not open $first_filename. Aborting.\n";

1

When executed, this code does not produce the error message from earlier, nor
does it die. This has nothing to do with the fact that the itdoesnotexist.txt
disk-file now exists. It has everything to do with the fact that the code is now
protected by the eval block, which is a great facility, as potentially troublesome
code can now be protected.

Maxim 8.2 Use eval to protect potentially erroneous code.

What completes the eval facility is the addition of a mechanism to check if a fatal
error did indeed occur during the eval block. If die is invoked within an eval
block, the block immediately terminates and per1 sets the internal $@ variable
to the message generated by die. After the eval block, it is a simple matter to
check the status of $@ and act appropriately. Adding this if statement after the
above eval block:

if (@)
{

}

print "Calling eval produced this message: $@";

prints the following message to STDOUT when the itdoesnotexist.txt disk-file
does not exist:

Calling eval produced this message: Could not open jtdoesnotexist.txt. Aborting.

7
Perl programmers refer to the program dieing.



8.6

Sorting 155

Typically, the code within the if block associated with the eval does more than
print a message to STDOUT. That’s where recovery comes in. It would be a good
idea in this particular example to try to open another disk-file or, perhaps, create
itdoesnotexist.txt as an empty disk-file, and attempt to open it again. The
program can then continue as normal.

Sorting

Perl provides powerful in-built support for sorting®. Two subroutines, sort and
reverse, can be used to sort lists of strings or numbers into ascending order,
descending order or any other customized order. To demonstrate the power of
Perl’s sorting technology, let’s step through a program, called sortexamples,
that demonstrates what’s possible.

The sortexamples program starts in the usual way: the magic first line is
followed by a short comment, then strictness is switched on. A list of four short
DNA sequences is assigned to an array called @sequences, which is then printed
to STDOUT:

#! /usr/bin/perl -w

# sortexamples - how Perl’s in-built sort subroutine works.

use strict;

my @sequences = qw( gctacataat attgttttta aattatattc cgatgcttgg );

print "Before sorting:\n\t-> @sequences\n";
This print statement produces the following output:

Before sorting:
-> gctacataat attgttttta aattatattc cgatgcttgg

that is, the four short sequences are displayed in the order that they were
assigned to the array. The next three lines of code produce three new arrays from
the @sequences array:

my @sorted = sort @sequences;
my @reversed = sort { $b cmp $a } @sequences;
my @also_reversed = reverse sort @sequences;

The first array, @sorted, is created as a result of invoking the in-built sort
subroutine, passing the @sequences array as its sole parameter. This sorts the

8 . . . . .
Only readers who have had to implement the Quicksort algorithm in any other programming
language can truly appreciate what a treat this actually is.



156 Perl Grabbag

@sequences array in Perl’s default order, which is to sort alphabetically in
ascending order (from “a” through to “z”).

The second array, @reversed, is also created as a result of invoking sort.
However, in addition to providing an array to sort, this invocation also supplies
a small block of code that is used to specify the sort order to be applied to the
array. The small block of code on this line is:

{ $b cmp $%$a }

To understand this block of code, consider that the $a and $b scalars are special
scalars, reserved for use with sort. On the basis of the comparison operator
applied to the two scalars and the order in which it is applied, the block of code
can customise the sort order. In this example, $b is being compared (cmp) to $a,
which results in the sort being applied in descending order (from “z” through to
“a”).

The third array, @also_reversed, is created by first sorting the @sequences
array (using the default sort order), then reversing the sorted list by invoking
the in-built reverse subroutine. Note that the reverse subroutine reverses the
order of elements in a list; it does not sort in reverse order. With the three sorted
lists created and assigned to arrays, they are printed to STDOUT using these
statements:

print "Sorted order (default):\n\t-> @sorted\n";
print "Reversed order (using sort { \$b cmp \$a }):\n\t-> @reversed\n";
print "Reversed order (using reverse sort):\n\t-> @also_reversed\n";

which results in the following output:

Sorted order (default):

-> aattatattc attgttttta cgatgcttgg gctacataat
Reversed order (using sort { $b cmp $a }):

-> gctacataat cgatgcttgg attgttttta aattatattc
Reversed order (using reverse sort):

-> gctacataat cgatgcttgg attgttttta aattatattc

Note that the output shows the original unsorted list of sequences in the
various sort orders. Both the second and the third array (@reversed and
@also_reversed) contain the same list of sorted elements.

It is also possible to sort in numerical order using sort. To demonstrate
the standard method of sorting in numerical order, the sortexamples program
defines a list of chromosome pair numbers and assigns them to another array,
called @chromosomes. The array is then printed to STDOUT:

my @chromosomes = gqw( 17 5 13 21 1 2 22 15 );

print "Before sorting:\n\t-> @chromosomes\n";



Sorting 157

This results in the following output:

Before sorting:
-> 17 5 13 21 1 2 22 15

Two invocations of the sort subroutine sort the @chromosomes array into numer-
ical order, with the first in ascending order (from 1 through to the largest number
in the array) and the second in descending order (from the largest number in the
array down to 1). These numerically sorted lists are assigned to the @sorted and
@reversed arrays respectively:

@sorted = sort { $a <=> $b } @chromosomes;
@reversed = sort { $b <=> $a } @chromosomes;

Note the requirement to provide a block of code to each of the invocations of sort
in order to define the correct sort order. Unlike earlier, the numerical comparison
operator (<=>) is used, as opposed to cmp, as the requirement here is to sort
numerically, not alphabetically. Note, too, the use of $a and $b when defining the
sort order. Two print statements display the results of the numerical sorting to
STDOUT, and conclude the sortexamples program:

print "Sorted order (using sort { \$%$a <=> \$b }):\n\t-> @sorted\n";
print "Reversed order (using sort { \$b <=> \$%$a }):\n\t-> @reversed\n";

The two print statements result in the following output:
Sorted order (using sort { $a <=> $b }):
-> 125 13 15 17 21 22

Reversed order (using sort { $b <=> $a }):
-> 222117 1513521

Perl’s ability to sort is powerful and highly customizable. Of course, there’s much
more to sort than is presented in this short example. To learn more, use the
following command-line to read the on-line documentation for sort that comes
with Perl:

perldoc -f sort

Here’s a small program, called sortfile, that takes any disk-file and sorts the
lines in the disk-file in ascending order?:

#! /usr/bin/perl -w
# sortfile - sort the Tines in any file.

use strict;

9 . . . .
It should be easy for you to work out what’s going on in this program. Everything you need
to know has already been covered in Bioinformatics, Biocomputing and Perl.



158 Perl Grabbag

my @the_file;
while ( <> )
{

chomp;
push @the_file, $_;
}

my @sorted_file = sort @the_file;

foreach my $1ine ( @sorted_file )
{

¥

Given a disk-file, called sort.data, with the following contents:

print "$1line\n";

Zap! Zoom! Bang! Bam!
Batman, Took out!
Robin, behind you!
Aaaaah, it’s the Riddler!

The following command-line sorts the lines in sort.data into ascending order:

perl sortfile sort.data

and produces the following output:

Aaaaah, it’s the Riddler!
Batman, Took out!
Robin, behind you!
Zap! Zoom! Bang! Bam!

Of course, the savvy Linux user would use the sort utility to do the same thing,
using this command-line:

sort sort.data

which illustrates, as with the grep examples from earlier, that some of the effort
required in creating a custom program can be avoided when the operating system
utilities are used instead.

Maxim 8.3 Take the time to become familiar with
the utilities included in the operating system.

Refer to the Suggestions for Further Reading appendix (page 461) for some
advice on learning more about the utilities included with Linux. A short list of
Linux commands and utilities is provided in the appendix entitled Essential Linux
Commands, beginning on page 467. Use this command-line to learn more about
the sort utility:

man sort



HERE Documents 159

8.7 HERE Documents

Consider the requirement to display the following text on screen in exactly the
format shown from within a program:

Shotgun Sequencing

This is a relatively simple method of reading
a genome sequence. It is ’’simple’’ because
it does away with the need to Tocate
individual DNA fragments on a map before

they are sequenced.

The Shotgun Sequencing method relies on
powerful computers to assemble the finished
sequence.

Utilising the Perl features already known, a sequence of print statements would
do the trick, as follows:

print "Shotgun Sequencing\n\n";

print "This is a relatively simple method of reading\n";
print "a genome sequence. It is ’’simple’’ because\n";
print "it does away with the need to locate\n";

print "individual DNA fragments on a map before\n";
print "they are sequenced.\n\n";

print "The Shotgun Sequencing method relies on\n";

print "powerful computers to assemble the finished\n";
print "sequence.\n";

By enclosing each line in double quotes and appending the appropriate number
of newlines to the end of each line, the above sequence of print statements
satisfies the requirement defined at the start of this section. Of course, there is a
better way to do this using Perl’s HERE document mechanism. Rather than try to
describe what a HERE document is, let’s look at an example:

my $shotgun_message = <<ENDSHOTMSG;
Shotgun Sequencing

This is a relatively simple method of reading
a genome sequence. It 1is ’’simple’’ because
it does away with the need to Tocate
individual DNA fragments on a map before

they are sequenced.

The Shotgun Sequencing method relies on
powerful computers to assemble the finished



160 Perl Grabbag

sequence.
ENDSHOTMSG

print $shotgun_message;

The above code assigns a HERE document to the $shotgun_message scalar. The
HERE document starts with the << chevrons, which has a programmer-chosen
identifier (written in uppercase by convention) attached to it. Note that there
should be no space character between the chevrons and the start of the identifier.
Everything between the identifier and the repetition of the identifier is the HERE
document. This means that the message describing Shotgun Sequencing is a HERE
document assigned to the $shotgun_message scalar. It is then printed to STDOUT
using a simple print statement.

Of note is the fact that the HERE document does not need to include all
those newlines, as was the case above with the sequence of print statements. In
addition, the double quotes surrounding each string are also missing from the
HERE document. All that programmers using the HERE document have to worry
about is formatting the text in the way that they wish it to display. It is possible to
improve upon the HERE document example above by removing the need for the
$shotgun_message scalar and printing the HERE document directly, as follows:

print <<ENDSHOTMSG;
Shotgun Sequencing

This is a relatively simple method of reading
a genome sequence. It is ’’simple’’ because
it does away with the need to Tocate
individual DNA fragments on a map before

they are sequenced.

The Shotgun Sequencing method relies on
powerful computers to assemble the finished
sequence.

ENDSHOTMSG

HERE documents are surprisingly useful, especially when it comes to dynamically
producing HTML documents. This use of HERE documents is discussed later in
the Working with the Web part of Bioinformatics, Biocomputing and Perl.

Where to from Here

This chapter ends Part I, Working with Perl. Readers who worked through this
and the preceding five chapters now know enough Perl to confidently perform a
variety of programming tasks. The remainder of this book builds upon this base
and applies what has been learnt about Perl to a number of Bioinformatics tasks.



Exercises 161

As the authors of Programming Perl, the classic Perl reference, advise at the end
of the first chapter of their book: Have the appropriate amount of fun.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

Unless you have a really good reason not to, always switch on strictness at
the top of your program.

Use eval to protect potentially erroneous code.

Take the time to become familiar with the utilities included in the operating
system.

Exercises

1.

Add the use strict directive to a selection of programs that you have
written. What effect does the addition of the directive have?

. Write a one-liner that scans a disk-file for any blank lines, printing the words

“Got one!” as soon as a blank line is found.

. Write a program to do the same thing as the one-liner from the last question.

. Can grep be used to perform the same task as the one-liner? Why or why

not?

. Write a program that invokes the 1s utility in long format, captures its

output, then displays a total count for the number of bytes in all of the
listed disk-files.

Write a program that writes another program, then uses eval to execute it.

Change the sortexamples program to sort the @chromosomes array alpha-
numerically, both in ascending and descending order. That is, given the
following list of values: 17, 5, 13, 21, 1, 2, 22 and 15, your program should
produce “1 1315172 21225”and “5222121715131".

Consider the following HTML.:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html1>
<head>
<meta http-equiv="content-type"
content="text/html; charset=IS0-8859-1">
<title>Check out this great resource!</title>
</head>



162 Perl Grabbag

<body>

A great introduction to Bioinformatics Computing Skills and Practice is
to be had by reading <i>Bioinformatics, Biocomputing and Perl</i> by
Michael Moorhouse and Paul Barry, published by Wiley, 2004.

<p> Check out the book’s web-site <a

href="http://glasnost.itcarlow.ie/ biobook/index.html">here</a>. </p>
</body>
</html>

Write a program using print statements to produce the above HTML
exactly as shown. Write a second program to do the same thing using a
HERE document. Which technique do you prefer?



Part 11

Working with Data

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 0 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X



9.1

9.2

9

Downloading
Datasets

Fetching datasets from the Internet.

Let’s Get Data

This chapter shows the reader how to download Bioinformatics datasets from
the Internet!. A small selection of datasets is used in the chapters that follow this
one, so it is best if the datasets are downloaded now, before they are required.

Downloading from the Web

While downloading individual data-files from a World Wide Web (WWW) site is
often useful, there are times when downloading a large number of data-files
makes the use of such a highly interactive mechanism cumbersome.2. Some
technologies allow the easy integration of data sources across the Internet.
Despite this, it is often convenient to download frequently used datasets and
store them locally. The advantages of such a strategy are:

1
Throughout this chapter, the terms “Internet” and “WWW” are used interchangeably to mean
the same thing.

2
Having said that, the Web Automation chapter, later in this book, shows how to automate
interactive web browsing.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 0 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X



166 Downloading Datasets

Ease of access - It is easier to access data-files on a local hard disk than it is to
write an interface routine to download them as needed from a - possibly
congested - location on the Internet.

Speed - Local hard-disk access, even over a shared file system, is usually faster
than operating through external networks to Internet locations. When the
processing is performed locally, it may be possible to allocate extra compu-
tational resources to the analysis.

Reliability - Accessing local hard-disk copies of data-files is more reliable than
network connections and WWW servers. This allows processing even in the
event of network failures, as the network is not required to run the analysis.

Stability - If the data changes frequently, it is often helpful to “freeze” it by
downloading a copy and using it locally until all analyses are completed.

Flexibility - Often the search facilities that exist on the WWW lack certain
required functionality. With the datasets available locally, it is possible
to develop bespoke search programs using, for example, Perl.

Security - Data or results are often sensitive, and sending them to a remote,
third-party Internet site may be unacceptable.

There are also disadvantages to this strategy:

Stale data - The local copy is a one-time “snapshot” of the dataset at a particular
point in time. At some stage, it will need to be updated or replaced by newer
data.

Storage - The dataset has to be stored somewhere, and some datasets can be
large. The Protein Databank (PDB), which is discussed in detail in the
next chapter, is close to four gigabytes, and the PDB is one of the smaller
databases! Consequently, storing multiple copies of the PDB is often imprac-
tical.

Performance - The centralised specialist services accessible from the WWW are
often configured with dedicated parallelised systems, designed to service
requests as quickly as possible. If the stored dataset is designed with such
systems in mind, it is unlikely that a local system will be able to match
this advanced processing capability. Consequently, some analyses may be
slower locally when compared to those performed on the WWW.

Downloading datasets can be accomplished in a number of ways. Some of
the more established sequence analysis programs, such as EMBOSS?, which is
available from:

http://www.emboss.org

3
The commercial equivalent of this program is called GCG.



9.2.1

Downloading from the Web 167

have specific methods for performing downloads. Typically, datasets are accessed
via a standard network connection to remote Internet sites. Frequently, down-
loads are automated to occur at regular intervals. The wget program, included
with most Linux systems, can be used to do just this.

wget is an excellent example of GNU software as distributed by the Free
Software Foundation. It is free, reliable and fully featured, yet simple to use. The
Administrators Guide, written by David Martin for use with the EMBOSS program,
uses wget within its automatic dataset update script. To learn about wget, issue
this command at the Linux command-line:

man wget

This displays the wget manual page. Use the arrow keys, PgUp and/or PgDn to
scroll through the manual page. When done, press the “q” key to quit. As can be
seen from reading the manual page, wget can accomplish a lot. Let’s start with
some simple examples.

Using wget to download PDB data-files

To download a single data-file via anonymous FTP, simply provide the URL# of the
data-file required after the wget command. To download the two PDB structures
used in the chapters that follow, use these commands:

mkdir structures

cd structures

wget ftp://ftp.rcsb.org/pub/pdb/data/structures/all/pdblm7t.ent.Z
wget ftp://ftp.rcsb.org/pub/pdb/data/structures/all/pdbliqt.ent.Z

Note that a directory called structures is first created (with the make directory
command, mkdir) then entered (with the change directory command, cd) prior
to invoking wget. An “Is -1" command confirms the download and creation of
the two data-files in the structures directory®:

-rw-r----- 1 michael users 574440 2003-11-04 16:05 pdblligt.ent.Z
-rw-r----- 1 michael wusers 592220 2003-11-04 16:05 pdblm7t.ent.Z

The “.Z” at the end of the downloaded data-files is significant. It indicates that the
data-files have been compressed with the popular ZIP compression technology.
The gzip program can unzip compressed data-files, as follows:

gzip -d pdblm7t.ent.Z pdbllgt.ent.Z

4
URL stands for “Uniform Resource Locator”, the technical name for all those web addresses
you type into the Location Bar of your favourite web browser.

” The disk-file sizes shown here may not match those you download, as there is every possibility
that these entries will have changed by the time this book appears in print.



9.2.2

9.2.3

168 Downloading Datasets

Another Ts -1 command confirms that the data-files have been decompressed:

-rw-r----- 1 michael wusers 2470986 2003-11-04 16:05 pdblligt.ent
-rw-r----- 1 michael wusers 2843181 2003-11-04 16:05 pdblm7t.ent

Mirroring a dataset

The wget program can be used to mirror datasets. Here is all that is required to
download the entire PDB, which is four gigabytes of data, stored in over 18,000
data-files:

wget --mirror ftp://ftp.rcsb.org/pub/pdb/data/structures/all/pdb

Obviously, such a command should be invoked only when there is a real need to
mirror the PDB. Remember: a download of this size takes a considerable amount
of time, not to mention disk space. If such a need exists, once complete, another
invocation of the same command downloads only additions or updates to the
PDB since the last mirror.

Before mirroring a dataset, check with other users on the network to see if a
local mirror already exists. If a fellow researcher from “down the hall” has a PDB
mirror, it is better to use that than download another copy. This important piece
of advice warrants its very own maxim.

Maxim 9.1 Download a dataset only when absolutely necessary.
Consider the implications of doing so first.

Smarter mirroring

While the wget command described in the previous subsection works, it results
in a deep directory tree. The actual data-files are found in locations similar to
this:

structures/ftp.rcsb.org/pub/pdb/data/structures/all/pdb

Such a deep directory structure can be very inconvenient and frustrating to
navigate. Another wget invocation can help with this problem. Let’s look at the
command-line first, then describe what wget is being asked to do:

wget --output-file=log --mirror --http-user=anonymous
--http-passwd=email@where.ever.net
--directory-prefix=structures/mmCIF
--no-host-directories
--cut-dirs=6 ftp://ftp.rcsb.org/pub/pdb/data/structures/all/pdb

P

Technical Commentary: Note that the ‘\’ characters at the end of each line are
continuation markers used to indicate that the command continues on the next
line. These are used here to allow your authors to fit this command onto this page.



9.2.4

Downloading from the Web 169

When entering the command, remember to put it all on one line and remove the
continuation markers. This technique of spreading a long line over multiple lines in
order to fit the printed page is common practice within the computing world.

The above wget command sets a number of options:

--output-file - a disk-file into which any message produced by wget is placed.
--mirror - turns on mirroring.

--http-user - sets the web username to use (if needed).

--http-passwd - sets the web password to use (if needed).
--directory-prefix - the place to put the downloaded data-files.

--no-host-directories - the instruction not to use the hostname when creat-
ing a mirrored directory structure, which is the “ftp.rcsb.org” part.

--cut-dirs - instructs wget to ignore the indicated number of directory levels.
In the above example, six directory levels are to be ignored, that is, the
“pub/pdb/data/structures/all/pdb” part.

Downloading a subset of a dataset

On many occasions, the entire contents of an FTP site might not be required, in
which case wget can fetch a specific data-file, placing it in the current directory.
Use a command similar to this:

wget ftp://beta.rcsb.org/pub/pdb/uniformity/data/mmCIF/all/1ger.cif.Z

While multiple URLSs to data-files can be supplied on the command-line (separated
by spaces), it is often more convenient to place the URLs in a data-file and use
the “--input_file=" switch.

The pdbselect program takes the PDB-Select list produced in the Non-
Redundant Datasets chapter (coming soon), builds a list of URLs, removes the
duplicates (as more than one chain may be contained in the same PDB data-file)
and then downloads them:

#! /usr/bin/perl

# pdbselect <list of PDB IDs> - a program that takes a 1list of PDB ID
# codes; build a 1ist of URLs for them;
# and automates the downloading of them
# using ’'wget’.

use strict;

my $Base_URL = "ftp://ftp.rcsb.org/pub/pdb/data/structures/all/pdb";

my $Output_Dir = "structures";

open URL_LIST, ">pdb_select_url.lst"



170 Downloading Datasets

or die "Cannot write to file: ’pdb_select_url.Tst’\n";

while ( <> )

{
if ( /Failed/ )
{

}

next;

s/ //9;

my ( $Structure, S$Length ) = split ( ":", $_ );
my ( $ID, $Chain ) = split ( ",", $Structure );

$ID =~ tr /[A-Z]/[a-2]/;

print URL_LIST "$Base_URL/pdb$ID.ent.Z\n";
}

close URL_LIST;

if ( !'-e $Output_Dir )

{
system "mkdir $Output_Dir";
}
if ( !'-w $Output_Dir or !-d $Output_Dir )
{
die "ERROR: Cannot access directory: ’'$Output_Dir’. Exiting\n";
}

system "sort -u pdb_select_url.1st > unique_urls.Tst";
system "rm $Output Dir/* > /dev/null";

system "wget --output-file=log --http-user=anonymous \
--http-passwd=email\@some.where.net \
--directory-prefix=$0utput_Dir -i unique_urls.lst";

This program takes a list of PDB ID codes from STDIN and downloads them
from the URL specified in the scalar variable $Base_URLS. Those structures
marked as “Failed” are skipped, otherwise a URL is built and written to the
pdb_seTect_url.1st file. Duplicate structures are filtered out using the “sort
-u” operating system utility, as it is pointless downloading the same structure
more than once (even though it contains multiple chains that might be useful). It
is easier to do it by using the system subroutine to invoke the sort utility, rather
than to perform the same operation in Perl.

Error-checking is performed to see if the output directory exists (otherwise it
is created) and that the directory can be accessed. All previous files in it are then

6
In this case, this is the home RCSB FTP site. If you are going to do this for yourself on
a regular basis, then use one of the geographically close mirror sites advertised on the RCSB
homepage.



Exercises 171

deleted using the rm system call’. Finally, wget is invoked with the list of URLs.
It should then be a case of sitting back, relaxing and waiting for the download
to complete. This may take some time: there are some hundreds of megabytes of
disk-files to download!

This short demonstration of how to use a pre-packaged download tool should
be useful not only for downloading PDB data-files but also in many other contexts.
With wget, the difficult part is building the URLs, which can be automated by
using Perl. The mirroring power of wget is best suited to bulk downloading of
data-files.

Where to from Here

This chapter introduced the powerful wget utility, which is used to download
large collections of data-files from the Internet, specifically PDB data-files. Having
secured the data, let’s investigate what it comprises in the next chapter.

The Maxims Repeated
Here’s a list of the maxims introduced in this chapter.

e Download a dataset only when absolutely necessary. Consider the implica-
tions of doing so first.

Exercises

1. Issue the command “man cron” to learn about the cron facility provided
by most Linux distributions. Once you understand how cron works, write
a small Perl script to automatically download a PDB structure of your
choosing, then add a “crontab entry” to your system in order to download
the structure once a week, every week.

2. Visit CPAN and download a copy of the 1ibwww-per1 library (also known
as LWP). Install the library and its associated modules into Perl. Use the
“man LWP” command to learn about the facilities provided by the library,
then rewrite the script created in answering the previous exercise to use the
facilities of LWP.

3. Rewrite the pdbselect program to use LWP instead of wget. Was it worth
the effort?

Even if there were none to start with: the redirection to /dev/nul1 silences any complaining
messages of protest from rm.



10.1

10

The Protein
Databank

Working with protein data-files.

Introduction

The similarity between the amino acid sequence of a “new” protein and one
previously characterised can give an indication of the function of the new protein.
Sequence search algorithms assume some groups of amino acids have similar
functional roles and consequently, occur in both sequences. It is also assumed
that these amino acids have similar local structures, where “structure” refers
to the amino acids arrangement in space. It is these structures that determine
the function of a protein. Although these assumptions are far from perfect and
ignore many subtle details, they are useful as a working model.

Determining the detailed structure (or more technically, the conformation) of a
protein is difficult for various technical reasons, especially compared to finding
a DNA or amino acid sequence. Despite this, the wonderfully detailed knowledge
that can result from determining the structure of the protein often justifies the
hard work. The aim of some structural studies is often more than to know how
the protein (or other biomolecule) “does what it does”, it is also to alter its
function. A classic application of this knowledge is to design a small molecule
that binds to the protein, more commonly known as a “drug”.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 0 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X



10.2

10.2.1

174 The Protein Databank

Determining Biomolecule Structures

There are many methods used for gaining information about the structure of
a biomolecule!, but the two major methods by which the location of atoms
can be determined to a useful accuracy (against the overall shape) are X-Ray
Crystallography and Nuclear Magnetic Resonance (NMR).

As the reader of Bioinformatics, Biocomputing and Perl may not be familiar
with the underlying methods, the briefest of descriptions are given here. These
descriptions are far from complete and a myriad of the finer details are intention-
ally omitted. The aim of these descriptions is to help the reader appreciate the
strengths and weaknesses of the models found in The Protein Databank (PDB),
so that they can be used intelligently.

Modern protein structures as found in the PDB are of very good quality. Those
researchers working in this field go to great lengths to demonstrate that the data
is a valid representation of the functional protein it describes.

X-Ray Crystallography

This is the most common method by which the 3D spatial locations of atoms
within proteins are determined. As its name implies, both crystals and x rays are
needed, although both of these cause problems.

The need for crystals is a major limiting factor for this method, as not
all proteins crystallise easily. Some proteins, such as membranes, are nearly
impossible to crystallise with current methods. A general rule is: no crystal,
no 3D structure. Many of the world’s: structural biologists, in their attempts
to become crystallographers, get stressed as they “Have not found any crys-
tals yet”. Sometimes the process of finding the right set of conditions (ini-
tial concentration, salinity, co-factors, temperature and so on) under which
a particular protein will crystallise well enough to be useful in a structural
study can take years of effort. This seems to be a science-directed art and,
in many cases, Iuck plays an important role. At times, suitable conditions for
a useful protein crystal are not found in time, the money to do the trials
runs out and there is frustration all around. That is life in the life sciences
for you.

The use of x rays creates another problem in that they cannot be focused. The
overall set-up of an X-Ray Crystallographic structural diffraction study is that x
rays are directed at a protein crystal and some of them are said to be reflected?.
Bragg’s Law states:

2d sinf = ni

1
In this chapter, the examples used are proteins. Many of the general points and principles
apply equally to pure DNA or RNA structures, as well as DNA, RNA and protein complexes.

2
The correct term is diffracted.



Determining Biomolecule Structures 175

and when the conditions of the law are satisfied, constructive interference
takes place. That is, for certain combinations of x-ray wavelength (1), angles
of deflection (9) and distance (d) between the planes of atoms in the protein
structure, multiple reflections have taken place. These can be detected using,
traditionally, electronic devices or photographic film. The pattern observed is
specific to the particular set of experimental parameters, so rotating the crys-
tal gives different diffraction patterns or sets of reflections. A protein crystal is
required for two reasons:

1. The reflections from an individual protein are very weak. This means that
lots of protein molecules arranged in the same orientation, as well as being
reasonably static, are needed to ensure that the contribution from each
atom, in every protein molecule, reinforces each other.

2. The reflection must be intense enough to be detectable.

A major problem with the use of x rays is that they cannot be focused using a
lens, in a method similar to the way light can be in a microscope. Light cannot
be used, as the protein molecules are too small to reflect them. This leads to
the so-called Phase Problem. The reflections are unfocused images of the protein
molecules in the crystal. Correcting this requires the use of complex mathematics
to regenerate the actual image of an individual protein. In fact, what is observed
is the x rays’ interaction with the electrons that surround the atomic nuclei in the
molecules, not the nuclei themselves3. The result of this “complex-maths-lens
processing” is an electron density map inside which the protein structure can
be fitted.

A series of iterations of refinement improves the electron density map, by
fitting the atoms that are known to be present within the protein inside the
exoskeleton mesh of the electron density map. The result is a series of structural
models that (hopefully) fit progressively better inside progressively better electron
density maps. As the electron density map improves, the reflections that contain
more detailed information, that is, those that are observed further from the
incident x-ray beam, can be included. At some stage, no more reflections can
be observable because of the limitations of the crystal or apparatus used to
collect the data. This limit is referred to as the resolution of the structure and it
refers to the minimum observable distance between two objects in the structure.
Any distances below this (such as 1.41 Angstrom bond lengths in a 2-Angstrom
resolution structure) are educated guesses based on what has been observed in
other molecular structures. For instance, it has been observed that bond lengths
between carbon atoms do not change much.

Another important measure is the R Factor. This indicates how well the pro-
posed structure matches the observed reflections. The recently devised Free R

3
This relates to the “electronic environment” referred to in the NMR discussion that follows.



10.2.2

176 The Protein Databank

measure has advantages over R Factor, as the calculation of Free R uses reflec-
tions that are not used in producing the structural model, effectively avoiding
the “over-refinement” of the model. A comparison of the Free R factor and the
resolution is made in one of the PDB parsing examples discussed later in this
chapter.

The result of an X-Ray Crystallographic study is a single protein structure in
which the variations of individual atoms from their point locations are described
by temperature factors. Some parts of the protein are distorted by crystallisation.
This is especially true of loops that in solution “hang out” away from the core of
the protein. When it is impossible to identify the actual locations of some amino
acids, perhaps due to the fact that the electron density maps are so poor, these
atoms are omitted. The electron density map is said to be disordered and such
“omitted” parts are left out of the reported structure.

The size of the protein that can be studied is many hundreds of amino acid
residues. The practical upper limit is set by the complexity of the data.

Nuclear magnetic resonance

NMR uses a very different approach to that of X-Ray Crystallography. No crystals
are used in the process, and the protein remains in solution throughout the entire
experiment. An intense and very linear magnetic field aligns the atomic nuclei of
the protein into one of two spin states. A series of radio frequency pulses is used
to perturb these by “flipping” some of the nuclei from one spin state to the other.
As the total amount of energy absorbed is low, the protein remains undamaged
and functions as normal. Eventually, the “flipped” spin state of the nuclei realigns
to the normal state, emitting a radio frequency pulse as it does so. The timing
of this re-emission of energy is determined by the electronic environment in
which the nucleus is embedded. A feature of this environment is the electrostatic
shielding effects of the surrounding nuclei. The nuclei, in addition to the bonds
linking them, can be identified by their spin decay properties.

A series of preparation pulses can be used to probe different environments
within the protein and eventually, a series of constraints is produced that describe
which nuclei exist in what type of environments. A series of models is then
proposed using the amino acid sequence of the protein, then the observed bond
lengths and angles as compared to those observed in other proteins (or small
molecules). The models are energy minimised using the identified constraints
and act as a guide to which of the model structures are most consistent with the
experimental data. Over time, some of the models converge upon a set of similar
structures. These, if all is well, are the series of configurations of the protein as
observed during the experiment. The models are, quite literally, the protein in
motion and, often, the structures partition into two or more sets corresponding
to different functional states.

As to which is “best”, the answer is that they are all consistent with the
experimental data and general assumptions about proteins (such as the bond



10.2.3

10.3

The Protein Databank 177

lengths and angles)?. Also, as with X-Ray Crystallographic structures, some parts
of the structure are more reliable than others. For instance, the number of
restraints observed in the loop regions can be so low that the reported structure
might be more a function of the minimisation process than of the experimental
data. A problem with NMR methods is the size of the proteins that can be studied.
Using current techniques, this equates to a maximum of 200 amino acids. This is
low compared to the many hundreds of amino acids that can be studied using
X-Ray Crystallography.

Summary of protein structure methods

The X-Ray Crystallography and NMR systems are complementary in many
respects, as both determine, to a high accuracy, the coordinates of the atoms
in protein structures. If protein structures determined by X-Ray Crystallography
and NMR are compared, they are generally consistent with each other and more-
over are biologically plausible. This should give the researcher confidence when
using them.

The Protein Databank

The PDB contains a large collection of previously determined biological struc-
tures. For inclusion in the PDB, the spatial locations of the atoms have to be
determined with sufficient accuracy to usefully describe protein structures. The
PDB also includes experimental details of how the structure was determined,
what publications and other databases to consult for more information on the
structure, some “derived data” information (such as notable secondary structure
features) and details of any ill-defined regions. While this information is meant
to be included in the PDB, some of it may be missing, incomplete or - in extreme
cases - incorrect for some database entries.

The PDB is one of the oldest bioscience data stores, dating back to 1971. It
originally stored the 3D coordinates of protein structures as determined by the X-
Ray Crystallography method. Prior to the PDB, structures were typically published
in journals, and many researchers re-entered the information manually into their
computers so as to facilitate further manipulation of them. As can be imagined,
this was less than ideal!

The original PDB data-file format adopted was a “flat” textual disk-file that was
80 columns wide.

Technical Commentary: The choice of 80 columns is no accident. Back in 1971,
data was stored on paper cards that had to have the information punched onto
them. Until the mid 1990s, most computer screens were still designed to display 80

4 . ) . .
There might be a structure nominated as “the most representative” in some NMR PDB
data-files.



178 The Protein Databank

columns, usually with 25 rows of information, so it made sense to restrict the width
of PDB disk-files to 80 characters when the format was devised.

Today, the structures in the PDB are determined by either X-Ray Crystallography
or NMR. Often, many years of effort go into determining an individual structure.
This is reflected in the growth of the number of entries in the PDB over some
30 years. There are currently over 18,000 entries in the database, as shown in
Figure 10.1 on page 178.

The structures of some macromolecules, such as the membrane-bound proteins
that are thought to make up over 30% of the protein complement of cells, are
particularly difficult to obtain using current methods. These macromolecules are
poorly represented with less than five “good structures” in the entire databank®.
Against this background, it is not surprising that the contents of the PDB are
somewhat biased towards certain types of proteins. This point is returned to later.

The PDB has been through many changes since its inception. The two most
notable are the inclusion of structural data from NMR studies (starting in the
mid 1980s) and the transfer of the databank’s administration from the original
Brookhaven National Laboratories (BNL) to Research Collaboratory Structural
Biology (RCSB) at the end of the 1990s. On the horizon is the adoption of the new
mmCIF data format, which is designed to replace the legacy PDB flat data-file. It is

20,000
m@ Deposited structures for the year _
18,000 —f| @ Total available structures
16,000 u
14,000 Inlm
12,000 —HH
10,000 —
8,000 miminln
6,000 miminln
4,000 HHHH
- M H [
O T T T T T T T T T T T T H\ n‘ n‘ n\_n\—n\rn\rn\rn\ \I— \l_ T T T T T
NN ONMNVODOAdNMNMTONOODOHNMNMITOONODNDO AN
NSNS0 00000WONNNODNINDNDNDNDNNO OO
[oNoNo oo o N oo o oloNo ool oo oo ol oo o oo oo oo N e
ArdddddAdd A AdA A A A A A A A A AT AAAAAA AN N N
Year Last updated : 21-Aug-2002

Figure 10.1 The PDB growth chart.

5 . i .
Though the non-membrane domains of some receptors have been determined by cutting off
their membrane-bound parts and expressing them separately.



10.4

The PDB Data-file Formats 179

unclear how great or widespread the impact of the introduction of this new data
format will be.

Some problems exist with the data in the PDB, mainly in terms of its overall
quality and presentation. This is to be expected with a data-store as old as the PDB
is. These problems are being addressed with great success by the valiant efforts
of those involved in the Data Uniformity Project. More recently, there has been
a tightening of the PDB procedures relating to the acceptance of structures, and
new tools have been developed to help depositors ensure their data is consistent.
Even so, be cautious when intending to make a large-scale survey of the biological
structures available in the databank. The unwary researcher can fall into many
traps, some of which are discussed later in this chapter. The biggest trap awaits
those researchers who rely on the PDB Header Section information (akin to the
annotation section in the sequence databases). As this is an important point, let’s
have a maxim to help keep everyone on the straight and narrow.

Maxim 10.1 Beware of anything in the PDB Header Section.

The PDB Data-file Formats

Data from the PDB is available in one of two formats. To some degree, these
formats are inter-convertible:

PDB flat file - The original, generic and highly unstructured PDB data-file format
that is still widely used by researchers. When biologists talk of “PDB files”
or “PDB format”, they are referring to this data-file format. The current
standard format is the 2.3 version.

mmCIF - The new PDB data-file format that is designed to offer a highly struc-
tured, modern replacement to the original PDB Flat File format. The mmCIF
format is often informally referred to as the “new PDB format”.

PDB data-files conforming to the mmCIF standard store their data as key-value
pairings, with additional relationships between the data items defined in a sep-
arate data-file. This separation of document structure from document content
allows researchers to verify that the data-file is complete and that no unautho-
rised additions have been made. A considerable amount of work has gone into
defining the mmCIF standard, and it is returned to in detail later in this chapter.
For now, let’s concentrate on the original PDB format. Newer structures, those
added to the PDB after 1996, conform to the v2.3 standard. Despite this, most
older structures do not. These “legacy” structures have been painstakingly con-
verted® into modern data structures conforming to the mmCIF standard. To

6
By those involved in the PDB Data Uniformity Project.



10.4.1

180 The Protein Databank

maintain compatibility with older software, researchers often convert the newer
mmCIF data-files into v2.3 of the PDB format.

Within the PDB, a structure is identified by a unique code. The code has two
parts: a single number, followed by three letters. Example unique codes are 1AFI
and 1LQT. Structure 1AFI is used in the Tools and Datasets chapter, as is the
NMR structure of “MerP”, the mercury ion-binding protein. Structure 1LQT is a
high quality X-ray Crystallographic structure entitled “A covalent modification
of NADP+ revealed by the atomic resolution structure of FPRA, a mycobacterium
tuberculosis oxidoreductase”.

Example structures

For the purposes of explanation, a range of structures is used to illustrate the
similarities and differences between PDB data-files. These differences are due
mainly to the method by which the structure was determined, in addition to
the details of the proteins they describe. The example PDB data-files are as
follows:

1LQT - A modern, high-resolution “Oxidoreductase” enzyme structure produced
using X-Ray Crystallographic techniques. This structure is shown in Fig-
ure 10.2 on page 180.

IM7T - A modern protein structure of “Thioredoxin” produced using NMR. This
structure is shown in Figure 10.3 on page 181.

Figure 10.2 Example PDB structure 1LQT.



10.4.2

The PDB Data-file Formats 181

Figure 10.3 Example PDB structure 1M7T.

Take the time to download the data-files containing 1LQT and 1M7T, as it is helpful
to have them available while working through the remainder of this chapter. The
overall arrangement of the structures is shown in “cartoon form” in the figures
(thanks to the use of the Open Rasmol program). These figures highlight the
helices (corkscrews) and the sheets (flat ribbons). Note that even these simple
molecular graphics help give an appreciation of the structure.

Downloading PDB data-files

PDB structure data-files can be downloaded from many web-site locations on the
Internet. As described in the previous chapter, the RCSB web-site is always a good
place to start:

http://www.rcsb.org/pdb/
Alternatively, the EBI hosts a European mirror. Follow the links from:

http://www.ebi.ac.uk/services/



10.5

182 The Protein Databank

to access the PDB from the EBL

Technical Commentary: On the Internet, most busy web-sites are geographically
replicated a number of times, primarily to lighten the load on the main, central web-
site. Such replicated web-sites are known as mirrors within the Internet community.
It is assumed that users of a busy web-site will contact the mirror geographically
closest to their current location, as opposed to always sending requests to the central
web-site. The RCSB has a number of such mirrors. Always try to use a mirror close
to you: they are listed on the main RCSB web page (http://www.rcsb.org/pdb/).

There is quite a variation in the size of PDB data-files. Some contain no more than
a few kilobytes, while others contain many megabytes of data. The NMR entries
tend to be large, as instead of just one set of coordinates, they often contain 20
or more.

Technical Commentary: A kilobyte is 1024 bytes, where a byte is commonly
considered to be the amount of space required to hold a single character. A
megabyte is 1,048,576 bytes (technically 1024 by 1024 bytes). It is common practice
to refer to a kilobyte as 1000 bytes and a megabyte as 1,000,000 bytes. Although
common, such practice is technically inaccurate and is best avoided.

If a small number of data-files is required, the extensive search facilities provided
by the RCSB web-site are an excellent method for finding specific PDB entries.
For a more extensive study, perhaps involving many different proteins, it is often
more convenient to download a PDB-Select non-redundant data set (described in
the next chapter).

Accessing Data in PDB Entries

There are some common sections to all PDB entries: those concerned with
indexing, bibliographic data, notable features and 3D coordinates. Other sections
are radically different from each other, as they depend on the experimental
technique (X-Ray Crystallography or NMR) used to determine the structure.
Rather than give a verbose description of each subsection, a summary of the
most important sections is provided. Note that in a PDB data-file there is a
left-right split (per line) and a top-bottom split (per data-file):

o Leftright - The left-most characters (a maximum of nine) on each line
indicate what information is present on the right-hand side.

o Top-bottom - There is an upper HEADER section that contains the annotation
about the structure (top) and a lower coordinates section that contains the
3D spatial locations of the atoms in the structure (bottom). The boundary
between these is taken as the first “ATOM” or “HETATM” line found in the
entry.



10.6

Accessing PDB Annotation Data 183

A short description of the most important fields in the PDB data-file is presented
below. An important point is that the “REMARK” field contains most of the
information about the structure in a series of subsections (or sub-remarks). The
most important fields include:

HEADER - Contains a brief description of the structure, the date and the PDB ID
code.

TITLE - The title of the structure.

COMPND - Brief details of the structure.

SOURCE - Identifies which organism the structure came from.

KEYWDS - Lists a set of useful words/phrases that describe the structure.

AUTHOR - The scientists depositing the structure.

REVDAT - The date of the last revision.

JRNL - One or more literature references that describe the structure.

REMARK 1 through REMARK 999 - Details of the experimental methods used to
determine the structure are contained in this subsection (see the example
in the next section).

DBREF - Cross links to other databases.
SEQRES - The official amino acid sequence (protein, RNA or DNA) of the structure.
HELIX/SHEET - Details of the regions of secondary structure found in the protein.

ATOM/HETATM - The 3D spatial coordinates of particular atoms in the protein
structure (the “ATOM” lines) or other molecules such as water or co-factors
(the “HETATM” lines).

Accessing PDB Annotation Data

There are many examples of parsing data from the HEADER section of PDB
data-files, all of which involve pattern matching. Perl is exceptionally good at
this. Rather that repeating the same basic procedure over and over again, two
representative examples are described in detail in this section. These examples
explore:

1. The relationship between the resolution of a structure and its Free R value,
both of which are measures of the quality of the X-Ray Crystallographic
structures.

2. The database cross-referencing section used to link to other databases.



10.6.1

184 The Protein Databank

Free R and resolution

The REMARK tag, type 2 subsection stores resolution, whereas the Free R value is
quoted in REMARK tag, type 3. Here’s a small extract from the 1LQT entry:

REMARK 2
REMARK 2 RESOLUTION. 1.05 ANGSTROMS.

Note that in NMR structures, REMARK tag, type 2 and type 3 are present, but the
data in them is “NOT APPLICABLE” for REMARK tag, type 2 and “NULL” or free
text for REMARK tag, type 3. This is a historic quirk of the PDB. Originally, the
requirement was for these fields to be filled in, which was the case when the PDB
contained only crystallographic structures. When NMR structures started to be
added, rather than leave the fields out (which in many cases would make more
sense), the approach adopted specified that they be set to “NULL”. By way of
example, consider this ‘“note” from the 1M7T structure’s HEADER:

REMARK 215 NMR STUDY

REMARK 215 THE COORDINATES IN THIS ENTRY WERE GENERATED FROM SOLUTION
REMARK 215 NMR DATA. PROTEIN DATA BANK CONVENTIONS REQUIRE THAT
REMARK 215 CRYST1 AND SCALE RECORDS BE INCLUDED, BUT THE VALUES ON
REMARK 215 THESE RECORDS ARE MEANINGLESS.

Structural Refinement is the process of iteratively fitting the model structure into
the electron density map, and details of this refinement are stored in REMARK tag,
type 3. Of these, the Free R value is very useful, as it measures the agreement
between the model and the observed x-ray reflection data. The lower the Free
R Value, the better the fit between the model and the observed data. Here’s an
extract:

REMARK

3 FIT TO DATA USED IN REFINEMENT.
REMARK 3 CROSS-VALIDATION METHOD : THROUGHOUT
REMARK 3 FREE R VALUE TEST SET SELECTION : RANDOM
REMARK 3 R VALUE (WORKING + TEST SET) : 0.134
REMARK 3 R VALUE (WORKING SET) : 0.134
REMARK 3 FREE R VALUE : 0.153
REMARK 3 FREE R VALUE TEST SET SIZE (%) : NULL
REMARK 3 FREE R VALUE TEST SET COUNT 1 2200

Older structures may lack a Free R Value, as it was often not calculated.

A program, called free res, extracts the resolution and Free R Value from
any PDB data-files contained in a named directory. The entire source code to
free_res is as follows:



Accessing PDB Annotation Data

#! Jusr/bin/perl -w

# free_res - Designed to extract the ’Free R Value’ and ’'Resolution’
# quantities from ’PDB data-files’ containing structures
# produced by ’Diffraction’.

use strict;

my $PDB_Path = shift;

opendir ( INPUT_DIR, "$PDB_Path" )
or die "Error: Cannot read from mmCIF directory: ’$PDB_Path’\n";

my @PDB_dir = readdir INPUT_DIR;

close INPUT_DIR;

my @PDB_Files = grep /\.pdb/, @PDB_dir;
foreach my $Current_PDB_File ( @PDB_Files )
¢ my $Free_R;

my $Resolution;

open ( PDB_FILE, "$PDB_Path/$Current_PDB_File" )
or die "Cannot open PDB File: ’'$Current_PDB_File’\n";

while ( <PDB_FILE> )

{
if ( / EXPDTA / and !/DIFFRACTION/ )
{
last;
}
if ( / REMARK 2 RESOLUTION/ )
{
( undef, undef, undef, $Resolution ) = split (" ", $_);
}
if ( / REMARK 3 FREE R VALUE /)
{
$Free_R = substr ( $_, 47, 6 );
$Free_R =" s/ //g;
if ( $Free_R =" /NULL/ or $Resolution eq "" )
{
last;
}
else
{
printf ( "%7s %4.2f %7.3f \n", $Current_PDB_File,
$Resolution, $Free_R );
last;
}
}
}

close ( PDB_FILE );

185



10.6.2

186 The Protein Databank

Plot of Free R against resolution
04 | T | T | T | T | T |

0.35

0.3

0.25

Free R

0.21—

0.15f

0 0.5 1 15 2 25 3 35
Resolution

Figure 10.4 Plotting free R values against resolution.

When executed against a directory containing PDB data-files, specified as a
command-line parameter, the free_res program checks each data-file in turn as
to whether the structure was determined by X-Ray Crystallography. It does this by
looking for “DIFFRACTION” in the EXPDTA field. If there’s no match, the program
skips to the next disk-file. Otherwise it parses (and extracts) the resolution and
Free R values from the current data-file. Before displaying the results in an “easy-
to- parse” format, using Perl’s printf subroutine, the program checks to see if
both the $Free R and $Resolution scalar variables actually contain data. The
idea here is that the output from free_res be redirected to a disk-file.

When Free R and Resolution are plotted against each other, they show a good
correlation of 0.666 (Pearson Correlation Coefficient). Figure 10.4 on page 186
presents the plot. This is an improvement on the poorer value of 0.36 between
the standard R value and Resolution as found by others. The reason for the
difference between the R value and Free R factors is multi-factorial, but is mainly
due to the difficulty with which a low Free R factor can be obtained, relative to a
standard R factor, from poorer x-ray resolution data.

Database cross references

The DBREF subsection gives a list of cross references to other Bioinformatics
databases. This makes it easier for researchers to integrate biological datasets.
The present deposition policy of the PDB requires that all proteins longer than
ten residues should be cross referenced. This means that short peptides, which
may be synthetic, are excluded.



Accessing PDB Annotation Data

187

The second value on the DBREF line is the PDB identifier. By examining this
value, researchers and automatic parsing programs can tell to which structure
the entry belongs. The DBREF lines from our example structures are shown here:

DBREF 1LQT A 1
DBREF 1LQT B 1

DBREF 1AFI 1

DBREF 1M7T A 1
DBREF 1IM7T A 67

456
456

72

66
106

GB
GB

SWS

SWS
SwWS

13882996 AAK47528 1 456
13882996 AAK47528 1 456
P04129  MERP_SHIFL 20 91
P10599  THIO_HUMAN 0 65
P00274  THIO_ECOLI 68 107

To what does SWS and GB from these extracts refer? The PDB publishes a table
(reproduced below) of database names and their associated, abbreviated codes.
It can be useful to have this table close at hand when working with cross

references:

BioMagResBank
BLOCKS

European Molecular Biology Laboratory

GenBank

Genome Data Base
Nucleic Acid Database
PROSITE

Protein Data Bank

Protein Identification Resource

SWISS-PROT
TREMBL

BMRB
BLOCKS
EMBL
GB

GD

NDB
PROSIT
PDB
PIR
SWS
TREMBL

The DBREF lines identify the following fields, working from left to right:

e PDB ID code.

o Chain identifier (if needed).
o The start of the sequence.

¢ Insertion code (absent in all our examples).

¢ End of the sequence.

e The external database to which the cross reference refers.

o The external database accession code.

e The database external accession name (the more human-memorable version
of the accession code in many cases).



10.6.3

188 The Protein Databank

o The start, insertion (absent in all our examples) and end of the sequence in
the external database.

The field boundary positions can be found in the PDB documentation. By way of
illustration, use code similar to the following to extract the structure name, chain,
accession code and the external database the accession code refers to from the
DBREF line. This code assumes the DBREF is stored in Perl’s default variable, $_:

my ( $Struct, $Chain, $Dbase, $AC_code ) = ( substr( $_, 7, 4 ),
substr( $_, 12, 1),
substr( $_, 26, 6 ),
substr( $_, 33, 8 ) );

$Struct =" s/ //9;

$Chain ="s/ //9;

$Dbase ="s/ //9;

$AC_code =" s/ //g;

The four substitutions “clean up” the parsed data by removing any and all
unwanted space. Note that for the 1IM7T structure, the start and stop positions
have not been extracted. This structure is a chimera between the two example
entries, producing the following results if printed:

"IM7T’, °’A’, ’SWS’, ’P10599’
"IM7T’, A’ ’SWS’, ’P00274’

It is worth mentioning that the 1AFI structure contains a Heavy Metal Associated
sequence motif that is indexed in the PROSITE database as PS01047. The deposi-
tors of the structure knew about this motif as it gives the protein its mercury ion
scavenging ability. This also explains why much effort was expended on deter-
mining the protein’s structure. A SITE entry is included later in the data-file, but
a database reference to PROSITE is not. Be aware that just because a database
cross-reference field is absent does not mean that a reference does not exist.

Coordinates section

The coordinate data for the locations of atoms in the macromolecular structure
is straightforward, especially when compared to the annotation contained in
the HEADER section of the PDB data-file. Recall that while the coordinates are
presented as points in space, the atoms they represent are actually in motion. In
crystallographic structures, isotropic B-factors, commonly referred to as “Tem-
perature Factors”, give us an idea of the vibration of the molecule. For very
high-resolution structures, Anisotropic Temperature Factors may be included in
the ANISOU lines. These provide an idea of the vibration of the molecule in the
directions of the coordinate axes. In NMR structures, the variation in position of



Accessing PDB Annotation Data 189

a particular atom between different models in the ensemble can be used as a sim-
ilar measure of motion or as an indication of the error between the minimisation
models. It is sometimes easy to tell the difference, while other times it is not.

Another major difference found in NMR structures is the inclusion of the
ensemble of models delimited by the MDL and ENDMDL lines. There are some entries
that contain a single NMR structure, but this is only the most representative
model; others have a nominated “most representative structure”. Here is an
example from 1IM7T:

REMARK 210
REMARK 210 BEST REPRESENTATIVE CONFORMER IN THIS ENSEMBLE : 21
REMARK 210

Referring to the 1LQT x-ray structure, an extract of lines from the coordinate
section looks like this:

ATOM 1 N ARGA 2 26.318 -8.010 39.090 1.00 20.71 N
ANISOU 1 N ARGA 2 2040 3071 2755 114 -339 -393 N
ATOM 2 CA ARGA 2 25.150 -8.702 38.505 1.00 18.85 C
ANISOU 2 CA ARGA 2 2029 2677 2455 67 -321 -209 C
ATOM 3 C ARGA 2 24.846 -8.176 37.123 1.00 17.23 C
ANISOU 3 C ARGA 2 1689 2429 2429 143  -282  -258 C
ATOM 4 0 ARGA 2 25.151 -7.048 36.775 1.00 18.14 0
TER 7215 GLY A 456

ATOM 7216 N ARG B 2 -19.423 25.709 6.980 1.00 21.57 N
ANISOU 7216 N ARG B 2 2476 3012 2707  -165 -370 95 N
ATOM 7217 CA ARG B 2 -18.718 26.510 8.024 1.00 19.01 C
ANISOU 7217 CA ARG B 2 2127 2672 2424 -63  -285 91 C
ATOM 7218 C ARG B 2 -17.250 26.207 8.002 1.00 17.22 C
ANISOU 7218 C ARG B 2 1955 2392 2196 -91  -299 121 C
ATOM 7219 O ARGB 2 -16.851 25.158 7.535 1.00 18.15 0
TER 14289 GLY B 456

HETATM14290 C ACT 1866 -13.075 1.733 10.218 1.00 27.25 C
ANISOU14290 C ACT 1866 3493 3560 3299 -39 -36 -44 C

CONECT14290142911429214293
CONECT1429114290
CONECT1429214290

TER

CONECT1469014663
MASTER 389 0 15 46 38 0 0 620280 2 401 72
END



190 The Protein Databank

Likewise for the 1M7T NMR structure, and

like this:

MODEL

ATOM 1
ATOM 2
ATOM 3
ATOM 4
ATOM 5
ATOM 6
ATOM 7
ATOM 8
ATOM 9
ATOM 10
ATOM 11
ATOM 12
ATOM 13
ATOM 14
ATOM 15
ATOM 16
ATOM 17
ATOM 18
ATOM 19
ATOM 20
TER 1659
ENDMDL

MODEL

ATOM 1
ATOM 2
TER 1660
ENDMDL

2HB
1HG
2HG
1HE
2HE
3HE

MET
MET
MET
MET
MET
MET
MET
MET
MET
MET
MET
MET
MET
MET
MET
MET
MET
MET
MET
VAL

VAL

MET

MET

VAL

>>>>>>>>>>>>>>>>>>> >
NRRRRPRRRERRERRRPRRPRRRRERRRRR

A 107

A 107

OCOOOOONIABANNDANNOPAWWORNW

.110
.546
.134
.882
.466
.781
.256
.004
.906
.650
.134
.517
.996
.397
.596
.907
.344
.169
.553
.215

.750
.487

-4.682
-3.712
-3.295
-2.130
-2.491
-1.903
-0.166
-0.307
-4.327
-5.601
-4.738
-4.178
-1.724
-2.778
-2.461
-1.993
-1.302
-0.120

-4.256

-6.779
-5.475

In each ATOM line, the fields” are as follows:

COLUMNS
1- 6
7 - 11

13 - 16

18 - 20

22

23 - 26

27

31 - 38

39 - 46

Record name
Integer

Atom

Character

Residue name

Character

Integer

AChar

Real(8.3)

Real(8.3)

"ATOM(s)
serial
name
altLoc
resName
chainID
resSeq
iCode

X

y

Atom serial number.
Atom name.
Alternate location indicator.

-3.
-2.
-2.
-2.
.002
-3.
-3.
-2.
-3.
-2.
-2.
.079
-1.
-1.
-3.
-3.
-3.
-1.
-3.
-2.

-2

-1

-1.
-2.

Residue name.
Chain identifier.
Residue sequence number.
Code for insertion of residues.
Orthogonal coordinates for X 1in

Angstroms.

025
053
450
758

370
285
920
980
859
858

405
536
807
998
167
869
505
446

627
290

RFRRRRPRRRERRERERRRPRRPRRRERERRRRR

.00
.00

[eNeoNeNoNoNeNoNoNeoNoNolNoNoNoNoloNoNo o Ne)

.00
.00

Orthogonal coordinates for Y in

7
These are extracted from the PDB’s on-line documentation.

extract of the coordinates looks

ZIIIITITITITIITITITTITNLMNNOHhONNZ



10.6.4

Accessing PDB Annotation Data 191

Angstroms.

47 - 54 Real(8.3) z Orthogonal coordinates for Z in
Angstroms.

55 - 60 Real(6.2) occupancy Occupancy.

61 - 66 Real(6.2) tempFactor Temperature factor.

73 - 76 LString(4) segID Segment identifier, left-justified.

77 - 78 LString(2) element Element symbol, right-justified.

79 - 80 LString(2) charge Charge on the atom.

Some fields are separated by whitespace, while others are not. Note that there is
space between the second and third columns, while there is none between the
last three LString fields. This can make the parsing of the data more difficult than
it would normally be, although Perl’s substr subroutine can work wonders here.

Extracting 3D coordinate data

Extracting coordinate data from PDB data-files, despite the lack of whitespace,
is straightforward. The technique involves extracting the three substrings from
each line that contains the X, Y and Z coordinates. Assuming the data is in $_,
three invocations of Perl’s substr subroutine do the trick:

my ( $X, $Y, $Z2 ) = ( substr( $_, 30, 8 ),
substr( $_, 38, 8 ),
substr( $_, 46, 8 ) );

The X, Y and Z coordinates are now held in appropriately named scalar variables

for later use by a program. It is also good practice to remove any additional

(and unwanted) whitespace from the three variables. The standard technique is

demonstrated in the simple_coord_extract program, which follows:

#! /usr/bin/perl -w

# simple_coord_extract <PDB File> - Demonstrates the extraction of
# C-Alpha co-ordinates from a PDB
# data-fiTe.

use strict;

while ( <> )

{
if ( /TATOM/ && substr( $_, 13, 4 ) eq "CA ")
{
my ( $X, %Y, $Z ) = ( substr( $_, 30, 8 ),
substr( $_, 38, 8 ),
substr( $_, 46, 8 ) );
$X =" s/ //9;
$Y =" s/ //9;

$2 =" s/ //9;



10.7

192 The Protein Databank

print "X, Y & Z: $X, $Y, $Z\n";

This program binds against the “ATOM” at the start of the line, in addition to a
value of “CA ” at position 13 in the line. This latter test ensures that the atom
is of type carbon-alpha. When both tests pass, that is, the pattern is found and
the line represents a carbon-alpha atom, the X, Y and Z coordinates of the atom
are extracted from the line as a result of the three invocations of substr. The
resulting scalar variables ($X, $Y and $Z) have any spaces removed from them
in the three substitution statements. Finally, the coordinates are displayed on
STDOUT. When executed, the simple_coord_extract produces this output for the
1LQT structure:

X, Y & Z: 25.150, -8.702, 38.505
X, Y & Z: 23.675, -8.497, 35.069
X, Y& Z: 20.747, -6.252, 34.332
X, Y & Z: 17.545, -8.297, 34.292
X, Y & Z: 15.182, -7.484, 31.454
X, Y &Z: 11.736, -8.952, 30.942
X, Y & Z: 10.261, -9.014, 27.451
X, Y&Z: 6.507, -9.548, 27.173

Note that the program makes no attempt to test for the protein chain marker.
Consequently, in the case of 1LQT, all of the coordinates for both the A and B
chains are displayed.

Contact Maps

The simple_coord_extract program is amended in this section to create a
Contact Map. In a contact map, the distances between all the amino acids are
calculated (using the standard Pythagoras equation), then those within a certain
distance of each other are marked with an “0” character. Those outside the
distance are marked with a space character.

One aspect to consider is whether this is computationally possible: is the
computer being asked to do too much? Calculating the distances between all
possible amino acids seems to be complicated. How many calculations need to be
performed? How much memory is needed? Will the program become much more
complicated?

Although consideration of these questions is reasonable, there is no need
to panic. Proteins at the level of abstraction of fixed 3D spatial coordinates
are computationally small. As there are 450 carbon-alpha atom points in the
test protein, there are 450 by 450 potential distance calculations, which gives
a total of 202,500. Although large, performing this number of calculations is



Contact Maps 193

practical using modern PCs. It is also possible to omit half the calculations, as
the distance from amino acid number 4 to amino acid number 5 is the same
as that from number 5 to number 4. Also, it is possible to omit the diagonal,
which calculates the distances between the same amino acid and itself which is,
unsurprisingly, zero.

The strategy used is an extension of those from earlier programs: the “CA”
(carbon-alpha) atoms are extracted from the PDB data-file. These are loaded into
memory and a loop iterates over them, calculating the distance to a currently
nominated reference atom. A second nested (or inner) loop changes this reference
point as required. A test verifies whether the two amino acids are closer than
a particular distance and, if they are, prints a “0” marker, otherwise a space is
printed8. For the purposes of demonstration, a distance of 12 Angstroms is used.
This value is used by many other contact maps and, while somewhat arbitrary,
is close to the maximum distance that one part of a protein can directly affect
another part. Additionally, it is close to the maximum distance across two closely
packed secondary structures, such as « helices. Here is the entire source code to
the Contact_map.pl program, which implements this strategy:

#! /usr/bin/perl -w

# Contact_map.pl - based on the CA_dist_calc.pl program. Produces a

# triangular diagram of all the distances between c-alpha
# atoms under a certain threshold.

#

# Usage: Contact_map.pl <PDB FILE> [Chain]

use strict;

use constant CONTACT_DEFINITION => 12;

nween,
’

my $Chain =

my $Previous_Res = ;

if ( $#ARGV == -1 )

{
die "Usage: CA_dist_calc.pl <PDB FILE> [Chain]\n";
}
elsif ( $#ARGV == 1 )
{
$Chain = pop @ARGV;
}

my %Atoms;
my @Res_List;

while ( <> )
{

8
This strategy, rather conveniently, preserves any existing spacing.



194

The Protein Databank
if ( /"ENDMDL/ or /"TER/ )
{
last;
}
if ( !/"ATOM/ or substr( $_, 13, 3 ) ne "CA " )
{
next;
}
if C ( substr( $_, 21, 1 ) ne $Chain ) and ( $Chain ne "*" ) )
{
next;
}
my $Res_Number = substr( $_, 22, 4 );
if ( $Res_Number eq $Previous_Res )
{
next;
}
else
{
$Previous_Res = $Res_Number;
}
$Res_Number =" s/ //g;
push @Res_List, $Res_Number;
my ( $X, 8y, $Z ) = ( substr( $_, 30, 8 ),
substr( $_, 38, 8 ),
substr( $_, 46, 8 ) );
$X =" s/ //9;
$Y =" s/ //g;
$2 =" s/ //9;
$Atoms{ $Res_Number }{ X } = $X;
$Atoms{ $Res_Number }{ Y } = $Y;
$Atoms{ $Res_Number }{ Z } = $Z;
}
print "Number of Residues: ", $#Res_List+l, "\n";

foreach my $Current_Res_Column ( @Res_List )

{

printf "%03d: ", $Current_Res_Column;

foreach my $Current_Res_Row ( @Res_List )
{
my $Dist = sqrt( ( $Atoms{ $Current_Res_Column }{ X } -
$Atoms{ $Current_Res_Row }{ X } ) ** 2 +
( $Atoms{ $Current_Res_Column }{ Y } -
$Atoms{ $Current_Res_Row }{ Y } ) ** 2 +
( $Atoms{ $Current_Res_Column }{ Z } -
$Atoms{ $Current_Res_Row }{ Z } ) ** 2 );



Contact Maps 195

if ( $Dist < CONTACT_DEFINITION )

{
print "0";
}
else
{
print " ";
}
}
print "\n";

}

The Contact_map.pl program is executed against the 1LQT structure with the
following command-line:

perl Contact_map.pl pdb/1LQT.pdb
The first 25 lines of output are shown here:

Number of Residues: 452

002: 0000 00000

003: 00000 00 00 0000000

004: 000000 00 00 0000000

005: 0000000 0 00 O 0000000

006: 0000000 0 00 000 0000000

007: 00000000 00 00O O 0000000

008: 0000000000000000 O 0000000

009: 00000000000 00 0000000 000

010: 0000000000000 000000000000

011: 0000000000000 0000000000000000 0 000
012: 000000000000 00000 0000000000 0 00 000
013: 0000000000000 000000 O 000000000 O
014: 00000000000000 0 00000 0
015: 00000000000000000 00000 00000 0 0
016: 00000000000000000 00000 000 O 00000000
017: 0 000000000000000 0 0 00 00000
018: 00000000000000000000 000 0 0
019: 0000000000000000000000 000000 00000
020: 0 000000000000000 000 O 00000
021: 0 000000000000000 00 0
022: 000000 000000000000000 000000 0
023: 0000 00000000000000 000000 00
024: 00000000000000 00000 0
025: O 000000000000000000

Examine the grouping of the zeroes along the diagonal. These indicate that amino
acids close together in sequence are close together in physical space, too. Of more
interest are the off-diagonal contacts, which show how the protein has folded
back on itself and which part associates with which. A far better representation
than this textual printout is to plot an image using Perl’s GD module and the
gd1ib library, as described later in the Data Visualisation chapter. By way of a
taster of what is possible, a preview of the image is shown in Figure 10.5 on
page 196.



10.8

196 The Protein Databank

O Y o
iy 5
AT L e

Figure 10.5 The graphic image contact map.

STRIDE: Secondary Structure Assignment

In this section, the STRIDE program?®, maintained by Dmitrij Frishman, is used
to find the secondary structural elements in the example proteins. The results
should be similar to those in the HELIX, SHEET and TURN subsections of the
HEADER annotation for the PDB data-file. Why go to the trouble of using STRIDE
when the information is already available? There are a number of reasons:

1. The annotation may be missing or was, for some reason, never generated.

2. It is often easier to run STRIDE on the structure than reconstitute the
assignments from the HEADER section.

3. The STRIDE output has a residue-by-residue assignment (as described
below).

9Available from the http://mips.gsf.de/mips/staff/frishman/ web-site.



10.8.1

10.9

Assigning Secondary Structures 197

4. STRIDE can find “turns” that exist in a structure that are often not listed in
the HEADER section.

5. STRIDE can produce extra derived information as part of its output. For
example, the location of hydrogen bonds, the dihedral angles in backbone
or the solvent accessibility. STRIDE can also report the amino acid sequence
in protein.

Maxim 10.2 It is often easier and desirable to
regenerate database annotation than trawl through entries
reconstituting the annotation using custom code.

Do not assume that because it is not acknowledged in the database annotation
the information is absent from the entire data set. Often, data can be found using
better analysis tools.

Installation of STRIDE

The installation of STRIDE is straightforward. Either download one of the many
pre-compiled binaries or compile the program from source. As the compilation
process is standardised under Linux, compiling from source is often preferred.
To do so, download the source code data-file, then decompress the archive using
this command-line:

tar -zxvf stride.tar.gz

Change into the newly created stride directory, then type make:

cd stride
make

Messages will appear on screen as the compilation process starts. Assuming
success, a new executable, also called stride, is created. Issue the following
command to execute STRIDE:

./stride

Assigning Secondary Structures

STRIDE, which is short for “STRuctual IDEntification”, was originally created by
Dmitrij Frishman and Patrick Argos. It automatically finds secondary structure
elements in proteins using a set of supplied coordinates.

Technical Commentary: Another commonly used algorithm in this area is DSSP,
short for “Define Secondary Structure of Proteins”, which was created by Wolfgang



198 The Protein Databank

Figure 10.6 Simplified definition of a hydrogen bond.

Kabsch and Christian Sander. DSSP is now maintained by Elmar Krieger at CMBI,
in Nijmegen, the Netherlands!©. It is the personal preference of the researcher as
to which to use. Your authors decided to cover STRIDE because of its convenient
downloading. Contrast the free download of STRIDE to DSSP, which requires poten-
tial users to complete licensing forms, then submit a request which must (some
time later) be processed. Non-academic users may also have to pay a licence fee.

STRIDE works by identifying hydrogen bonds within the structure.

Hydrogen bonds form when a hydrogen atom attached to a donor atom is
attracted by an acceptor atom because of the partial charge present on the
hydrogen and the acceptor, as shown in Figure 10.6 on page 198. Despite the
use of the name “bond”, it is really a loose association compared to the other
covalent bonds that are present in protein structures. In the protein backbone,
the donors are typically carbonyl oxygen atoms, and the hydrogen is attached to
amide nitrogen atoms.

With reference to Figure 10.6, the partial negative charge on the oxygen and
the partial positive charge on the hydrogen result in the formation of a hydrogen
bond if the distance (r) and angle 6 are realistic.

The hydrogen bonds are diagnostic of the type of structure: in the o Helix they
bond between successive turns of the Helix and in the “turn”, there is one across
the ends of the turn. In case of the g sheet, hydrogen bonds form between two
strands, in this case, between residues 3 and 9 and between residues 74 and 80.

First STRIDE searches for characteristic hydrogen bonding patterns in the
protein structure, as shown in Figure 10.7 on page 199. This molecular graphic,
as produced by Open Rasmol, shows four different types of secondary structure.
For simplicity, the cartoon representation of the backbone is used with the
hydrogen bond between atoms, which are shown by black rods. Residues 21 to
28 form an « Helix, 28 to 31 and 31 to 33 form a generic Coil and 33 to 38 form
a piece of a g sheet. For a particular amino acid K, these are:

a Helices - There is a hydrogen bond between K and K +4 as well as one between
K+ 1 and K + 5.

B Sheets - STRIDE searches for hydrogen bonds that form bridges between dif-
ferent parts of the protein structure: residues K and K + 1 must bond to at

1OSee http://www.cmbi.kun.n1/gv/dssp/ for more details.



Assigning Secondary Structures 199

Hydrogen bonds

o helix x

B sheet L Tuln

Figure 10.7 Example of secondary structure elements in proteins.

least two consecutive amino acids somewhere else in the backbone. Conse-
quently, the two regions can be quite distantly related in terms of amino
acid sequence.

The assessment of other less common secondary structure types: n helices,
3-10 helices or turns is performed in a similar way!!. Any patterns of hydrogen
bonds that are unrecognised are referred to as a Coil, which in many ways is
the “catch-all” state: anything not recognised as anything else gets called Coil in
structural biology terminology. STRIDE then attempts to extend the structural
element along the chain.

To improve the accuracy at the end of the structural elements, STRIDE uses
the dihedral angles ¢ and ¢ of the protein backbone, as shown in Figure 10.8
on page 200. These are specific examples of Torsion Angles, that measure the
rotation around a particular bond with reference to four atoms.

With reference to Figure 10.8, the rotational angle about the N-Ca bond (¢) is
calculated with reference to the C-N-Ca-C atoms; the rotational angle about the
Ca-C bond (called v) is calculated with reference to the N-Ca-C-N atoms. The
rotational angle around the C-N bond measured by the » angle is calculated with
reference to the Ca-C-N-Carbon-«, and it varies little because of the resulting
planar structure.

If the ¢ and v angles found in « helical or beta sheets are plotted against each
other, they group together in certain regions. This type of diagram is called a
Ramachandran Plot. It is often used as a progress measure during the process
of structural refinement, as certain regions correspond to more energetically
favourable conformations. This also means that assessment of modern structures

11
Curious readers are referred to the original STRIDE and DSSP papers for details. Both
programs use broadly the same system.



10.9.1

200 The Protein Databank

R
H
\ H
c Cq
4
75 ~
N T ¢ - \
C Ca
§ <= Partial double

o - bond character

Figure 10.8 Definition of dihedral angles in the backbone of protein structures.

using Ramachandran Plots for correctness might not be useful, as they all have
good Ramachandran angles! How else would the refinement programs have
proposed the structure you seel2?

Many protein structure analysis programs, including DeepView, can generate
these plots. Built into STRIDE is a probability map constructed in the same way
from the observation of the dihedral angles in real proteins. This is then used
in a scoring procedure to link particular combinations of o, ¢ and ¥ angles
with structural states. The hydrogen bonding patterns and the Ramachandran
probabilities are weighted and combined together, such that a good hydrogen
bonding potential can compensate for a less than optimal geometry and vice-
versa. If neither score exceeds a threshold, and none of the rules for other
secondary structures indicate an alternative, then the “catch-all” designation of
Coil is used.

Using STRIDE and parsing the output

Running STRIDE without any input displays the program’s usage information.
The message indicates that the user is expected to specify an input data-file, as
follows:

You must specify input file

Action: secondary structure assignment
Usage: stride [Options] InputFile [ > file ]

Options:
-fFile Output file
-mFile MolScript file

12 . . . . . .
By ignoring the experimental evidence in favour of a nice Ramachandran Plot perhaps? Be
careful to keep your training and validation datasets separate.



Assigning Secondary Structures 201

-0 Report secondary structure summary Only

-h Report Hydrogen bonds

-rIdlId2.. Read only chains Idl, Id2

-cIdlId2.. Process only Chains Idl, Id2

-q[File] Generate SeQuence file in FASTA format and die

Options are position and case insensitive

Executing STRIDE against the 1LQT structure, with the requirement that just the
“A” chain be processed, is accomplished with a command like this:

stride -cA 1l1qt.pdb

The resulting output contains a number of sections.

The first section contains a header section containing instructions on how to
cite the program and the methods it uses, which are identified by the REM tag.
This is followed by information in a very similar form to the original PDB data-file,
and it includes the name and date of the structure (HDR); the Compound (CMP),
the Source (SRC) and the Authors (AUT):

REM  — oo m o oo 1LQT
REM 1LQT
REM STRIDE: Knowledge-based secondary structure assignment 1LQT
REM Please cite: D.Frishman & P.Argos, Proteins 23, 566-579, 1995 1LQT
REM 1LQT
REM Residue accessible surface area calculation 1LQT
REM Please cite: F.Eisenhaber & P.Argos, J.Comp.Chem. 14, 1272-1280, 1993 1LQT
REM F.Eisenhaber et al., J.Comp.Chem., 1994, submitted 1LQT
REM 1LQT
REM —----m - General information -------————-————————————- 1LQT
REM 1LQT
HDR  OXIDOREDUCTASE 13-MAY-02  1LQT 1LQT
CMP ...

SRC ...

AUT ...

The next section contains a summary of the secondary structure allocation. Each
CHN line marks the start of a new summary for a particular chain. Each part of
the summary is split across pairs of lines. The first SEQ tag identifies the amino
acids. The second STR tag line uses a one-letter code to indicate the corresponding
structural state, of which the most common are “H” for « helix, “E” for extended
(one strand of a sheet), “T” for turn, “G” for 3-10 helix and a space character
for Coil:

REM - - Secondary structure summary -------—---——-———————- 1LQT
REM 1LQT
CHN ../exp_st A 1LQT
REM 1LQr
REM . . . . . 1LQr
SEQ 1 RPYYIAIVGSGPSAFFAAASLLKAADTTEDLDMAVDMLEMLPTPWGLVRS 50 1LQT
STR EEEEEE ~ HHHHHHHHHHHHHHHHTTTT EEEEEE HHHH 1LQT

REM 1LQr



202 The Protein Databank

REM . . . . . 1LQT
SEQ 51  GVAPDHPKIKSISKQFEKTAEDPRFRFFGNVVVGEHVQPGELSERYDAVI 100 1LQT
STR H TTTTTGGGGGGGHHHHHHHTTTEEEEETTTTTTTTTHHHHHHHTTEEE 1LQT

Each structural element in this section is then listed in LOC tagged lines. These
correspond to those residues displayed by Figure 10.8. There are some noticeable
differences between the assignments in the PDB data-file, as created by the
depositors, and those produced by STRIDE. This is due to slightly different
definitions of the secondary structure used, especially at the ends of the elements.
However, all the items are present, and the variation is not great:

LOC AlphaHelix  PRO 13 A THR 28 A 1LQr
LOC 310Helix LYS 59 A LYS 65 A 1LQT
LOC Strand TYR 4 A VAL 9 A 1LQT
LOC TurnII THR 29 A LEU 32 A 1LQT
LOC Strand MET 34 A LEU 39 A 1LQT
LOC Strand PHE 76 A GLY 80 A 1LQr

The third and final section provides a detailed description of each residue,
providing an easy-to-parse space-delimited format with actual space characters
between the columns (unlike the PDB data-files the data was derived from).
The remark line should (hopefully) explain what most of the fields contain. The
4th and 5th fields need further explanation. The 4th is the residue number as
reported in the PDB data-file. The 5th is an ordinal number, which starts at one
and increments by one per residue processed, and is created by STRIDE. The 10th
“Area” field identifies the area of the amino acid exposed to the solvent:

REM  —-—-ommommo - Detailed secondary structure assignment------------- 1LQT
REM 1LqQT
REM |---Residue---| |--Structure--| |-Phi-| |-Psi-| |-Area-| 1LQT
ASG ARG A 2 1 C Coil 360.00 156.52 121.3 1LQT
ASG PRO A 3 2 C Coil -75.72 161.36 35.7 1LQT
ASG TYR A 4 3 E Strand -71.26 145.24 21.2 1LQT
ASG GLY A 12 11 C Coil -83.55 -168.87 8.7 1LQT
ASG PROA 13 12 H AlphaHelix -53.20 -47.88 16.0 1LQT
ASG SER A 14 13 H AlphaHelix -63.16 -38.61 8.3 1LqQT

This format is so straightforward that to extract data from it using a bespoke
Perl program seems excessive. As an alternative, the gawk utility can be used
from the command-line to quickly parse the STRIDE data-file and create a custom
Ramachandran Plot, as shown here:

gawk ’/"ASG/ {print $8 " " $9}’ 1lqt.A.stride

The gawk utility detects the ASG tag at the start of the line!3 and prints out the 8th
and 9th fields. The surrounding single-quote marks are required to prevent the

13 .
Note the use of a regular expression.



Assigning Secondary Structures 203

operating system’s shell from incorrectly interpreting the gawk program options.
Here is an extract of the results produced by the execution of gawk:

360.00 156.52
-75.72 161.36
-71.26 145.24
-111.08 119.10
-118.65 131.78

This example can be extended to extract a subset of the data. To extract just
those residues involved in “Strand” or “AlphaHe11x” states, use command-lines
like these:

gawk '(/"ASG/ && /Strand/) {print $8 " " $9}’ 1lqt.A.stride

gawk ' (/"ASG/ && /AlphaHelix/) {print $8 " " $9}’ 1lqgt.A.stride

Figure 10.9 on page 203 shows the grouping of the close to 450 amino acids.
The figure shows a distinct grouping into certain regions. Those angles resulting
from “AlphaHelix” are surround by a circle and those from “Strand” are
shown surrounded by diamonds. This gives an impressive demonstration of the
grouping of the dihedral angles in a two-dimensional virtual space and the power
of derived data.

Almost any protein structural analysis program will create Ramachandran
Plots, as they are a fundamental diagnostic test used to determine if a protein

PHI/PSI plot 1LQT, Chain A

" »

s All
Helix
Strand

Figure 10.9 Ramachandran plot of dihedral angles of chain A from structure 1LQT.



10.9.2

204 The Protein Databank

structure is correct. In this context, a Ramachandran Plot may reveal parts of
the structure that are outside of the low-energy areas. This can be taken as
an indication of a region of poor structure or that there is a good reason for
the conformation to be as it is: for example, it is structurally important to the
function of the protein.

Extracting amino acid sequences using STRIDE
Another common use of STRIDE is to extract the primary structure, that is, the
amino acid sequence, from a PDB data-file. This is also straightforward, and is
invoked using the - command-line switch. The results are produced in FASTA
format!4. The following command-line:

stride -q 1llqgt.pdb

produces this output:

>11qgt.pdb A 452 1.050
RPYYIAIVGSGPSAFFAAASLLKAADTTEDLDMAVDMLEMLPTPWGLVRSGVAPDHPKIK

>11qgt.pdb B 454 1.050
RPYYIAIVGSGPSAFFAAASLLKAADTTEDLDMAVDMLEMLPTPWGLVRSGVAPDHPKIK

If a particular chain is to be reported on, the -c option is used to specify which
chain is required, as follows:

stride -cA -q 1llqt.pdb
resulting in the following output:

>11qt.pdb A 452 1.050
RPYYIAIVGSGPSAFFAAASLLKAADTTEDLDMAVDMLEMLPTPWGLVRSGVAPDHPKIK

This simplicity makes STRIDE the preferred method for obtaining the amino acid
sequence from a PDB data-file.

14
Described elsewhere in Bioinformatics, Biocomputing and Perl.



10.10

Introducing the mmCIF Protein Format 205

Introducing the mmCIF Protein Format

The mmCIF data format is intended to be a replacement for the legacy PDB data-
file format. Designed using modern data management techniques, the contents
of an mmCIF data-file are expressed in a series of key-value pairings. The meaning
of these pairings is stored in a separate data-file called a “Dictionary”, which, in
essence, allows mmCIF to store datal®.

mmCIF is designed to store structures created as a result of crystallography
investigations. While the storage of atom locations is the same as those in the
NMR structures, the experimental details associated with the production of the
structures differ. Even today, the additions needed for the mmCIF dictionaries
to support this extra NMR data are still the subject of much debate. If mmCIF
data-files need to be accessed directly, software libraries to process them do
exist, although these are still under active development.

The mmCIF data-file format is not designed to be “easily” read by humans;
computer programs are the main target audience. A side effect of this decision
is that the strict format definition makes it easy to “unwind” the data-file into
a software data structure. From a quality control perspective, this makes the
absence or addition of data easy to verify. The mmCIF data-file format is also that
which is the ‘cleaned-up” version of the PDB from the PDB Uniformity Project is
being made available.

The decision as to which format to use, either mmCIF or the legacy PDB data-file
format, depends on the requirements of the researcher. For now, a good rule
of thumb is to use the legacy PDB data-files, unless a very specialist application
demands otherwise. One interesting caveat relates to accessing the 3D coordinate
positions of atoms in the structure, together with their type/chain/residue des-
ignations. Unlike the PDB data-file, the mmCIF structure has fields that are space
delimited with absent information marked by a special “spacer” character (such
as “.”). Therefore, the simple Perl statement

@Fields = split( ".", $_);

will split, for example, the “ATOM” line into separate entries in the @Fields array.
It is then possible to use a statement like this:

$X_Coordinate = $Field[ 7 1;

15
This is similar to XML’s Document Type Definition (DTD), upon which mmCIF is based.



10.10.1

10.10.2

206 The Protein Databank

to access the coordinates. For applications in which data is used or needs to be
converted en masse to another data format, the precision inherent in the mmCIF
structures can be helpful.

Converting mmCIF to PDB

There are a number of programs that convert between mmCIF and the PDB data-file
format. Two of the most common are:

1. CIFTr - The RCSB distributes the CIFTr program, which can be used to
convert from the mmCIF structure to the PDB data-file format!S.

2. pdb2cif - Again from the RCSB, the pdb2cif program can convert from
the PDB data-file format to mmCIF!7.

In an ideal world, these two tools should be capable of processing each other’s
output, forming a closed cycle. That is, an mmCIF data-file can be converted
into its PDB equivalent by CIFTr. The resulting PDB data-file should then be
capable of being converted back to mmCIF using the pdb2cif, resulting in the
original data-file. Although a reasonable assumption, this is in fact overoptimistic,
but - hey - few things in life are perfect!

Converting mmCIFs to PDB with CIFTr

The installation of the CIFTr program is straightforward. A pre-compiled binary
version of the program will suffice for most purposes. Browse to the CIFTr web-
site, download the binary distribution for Linux, then unpack the downloaded
file into its own directory. The RCSBROOT environment variable is then set:

cd

tar -zxvf ciftr-v2.0-1inux.tar.gz

cd ciftr-v2.0-1inux/

setenv RCSBROOT “/ciftr-v2.0-1inux
export RCSBROOT = ~/ciftr-v2.0-Tinux

To convert a mmCIF data-file to its PDB equivalent, supply the data-file name on
the command-line as follows:

./CIFTr -i 1lqgt.cif

16CIFTr is written by Zukang Feng and John Westbrook, and is available on-line at
http://pdb.rutgers.edu/mmcif/CIFTr/index.html.

pdb2cif is written by P. E. Bourne, H. J. Bernstein and F. C. Bernstein, and is available on-line
at http://www.bernstein-plus-sons.com/software.



Introducing the mmCIF Protein Format 207

Note the use of the “-i” command-line switch (where “i” stands for “input”). If
successful, a data-file called 11qt.cif.pdb is created in the current directory.
Let’s try this with an example mmCIF data-file, which initially looks like this:

data_1LQT

#

Toop_

_audit_author.name

’Bossi, R.T.’

"Aliverti, A.’

’Raimondi, D.’

"Fischer, F.’

’Zanetti, G.’

’Ferrari, D.’

’Tahallah, N.’

"Maier, C.S.’

"Heck, A.J.R.’

"Rizzi, M.’

’Mattevi, A.’

#

_pdbx_database_status.status_code REL
_pdbx_database_status.entry_id 1LQT
_pdbx_database_status.recvd_deposit_form N
_pdbx_database_status.date_deposition_form ?
_pdbx_database_status.recvd_coordinates Y

Using an appropriately formed command-line, the above entry is converted into
its PDB equivalent data-file, which looks like this:

HEADER OXIDOREDUCTASE 13-MAY-02  XXXX
TITLE A COVALENT MODIFICATION OF NADP+ REVEALED BY THE ATOMIC
TITLE 2 RESOLUTION STRUCTURE OF FPRA, A MYCOBACTERIUM TUBERCULOSIS
TITLE 3 OXIDOREDUCTASE

CAVEAT 1LQT CHIRALITY ERROR AT THE CA CENTER OF ASP A 31.
COMPND MOL_ID: 1;

COMPND 2 MOLECULE: FPRA;

COMPND 3 CHAIN: A, B;

COMPND 4 SYNONYM: FERREDOXIN NADP REDUCTASE;

COMPND 5 ENGINEERED: YES

SOURCE MOL_ID: 1;

SOURCE 2 ORGANISM_SCIENTIFIC: MYCOBACTERIUM TUBERCULOSIS;

SOURCE 3 ORGANISM_COMMON: BACTERIA;

SOURCE 4 EXPRESSION_SYSTEM: ESCHERICHIA COLI;

SOURCE 5 EXPRESSION_SYSTEM_COMMON: BACTERIA

KEYWDS NADP+ DERIVATIVE, TUBERCULOSIS, OXIDOREDUCTASE

REMARK 4 1LQT COMPLIES WITH FORMAT V. 2.3, 09-JULY-1998



10.10.3

10.10.4

10.10.5

208 The Protein Databank

Problems with the CIFTr conversion

On the whole, CIFTr works well. However, it does have a number of problems:

1. The PDB identifier is missing from the HEADER line of the resultant PDB
data-file, having been replaced by “XXXX” instead. As a result, the statement
in REMARK tag, type 4 (above) is invalid.

2. Each time CIFTr executes, it creates a temporary disk-file in the /tmp
directory. This temporary disk-file is not removed when CIFTr exits. As the
temporary disk-file is uniquely named, it remains on the hard disk until
deleted manually. As a result, during large automated conversion runs, the
amount of available disk space can be dramatically reduced!8.

3. The CIFTr error log is appended to each time the program is executed.
There is no maximum limit set on the size of this error log. As with the
previous point, if not regularly deleted, the error log grows until it occupies
a large amount of disk space. Be sure to prune it regularly.

While preparing Bioinformatics, Biocomputing and Perl, the authors downloaded
the entire PDB from the Data Uniformity Project’s FTP site. This collection of data-
files is in mmCIF format, and CIFTr converted all of them. All of the resultant
PDB data-files conformed to the v2.3 standard, apart from the omission of the
PDB identifier code as described above.

Some advice on using mmCIF

As suggested earlier, as a general guideline, plan to work with the PDB data-files,
unless you have good reason to do otherwise. Experience has shown that working
with the legacy PDB data-files is straightforward and well established. If the most
up-to-date set of “super-standardised” PDBs are required, download the mmCIF
versions from the PDB Uniformity Project and convert them using CIFTr.

Automated conversion of mmCIF to PDB

The convert pdb program demonstrates how to use Perl to control the CIFTr
program to expand a complete directory of compressed mmCIF files. Here’s the
source code to convert_pdb:

#! /usr/bin/perl

# convert_pdb - Convert PDB script. Uses ciftr V.2.0 to convert

18Michael recently purchased a bigger hard disk after noticing that his current one was full.
It was only after purchasing the new one that Michael noticed a large collection of temporary
disk-files in his old hard-disk’s /tmp directory. After deleting these, the amount of free disk-disk
increased dramatically, negating the need for the new hard disk. As chance would have it,
Michael’s new hard-disk failed under warranty, and he returned it for a full refund!



Introducing the mmCIF Protein Format 209

# mirrored PDB from mmCIF into Legacy PDB format. The

# CIFTr program should be installed at the indicated path.
use strict;

my $CIFTr_path = ""/ciftr-v2.0-Tinux";

my $PDB_Path = "7/structures/pdb-select/pdbs";

my $mmCIF_Path = ""/structures/pdb-select/structures”;

$ENV{ RCSBROOT } = $CIFTr_path;

opendir( INPUT_DIR, "$mmCIF_Path" )
or die "Error: Cannot read from mmCIF directory: ’$mmCIF_Path’\n";

my @mmCIFdir = readdir( INPUT_DIR );
close INPUT_DIR;

open( OUTPUT_DIR, $PDB_Path )
or die "Error: Cannot read from PDB directory: ’$PDB_Path’\n";

foreach my $Current_mmCIF_file ( @umCIFdir )

if C !'C $Current_mmCIF_file =" m/cif/i ) )

{
next;
}
my $PDB_ID = ( $Current_mmCIF_file ) =" m/(\d\w\w\w).cif/;
my $PDB_name = $PDB_ID . ".pdb";

print "Now Processing ’$Current_mmCIF_file’ ";
print "into pdb file: ’$PDB_name’\n";

my @CP_return =

‘cp $mmCIF_Path/$Current_mmCIF_file .*;
my @Ciftr_run =

‘$CIFTr_path/bin/CIFTr -uncompress gzip -i ./$Current_mmCIF_file‘;
chomp( @Ciftr_run );

print join ",", @Ciftr_run,"\n";

if ( -e "./$PDB_ID.cif.pdb" )

{
my @Move_Result = ‘mv $PDB_ID.cif.pdb $PDB_Path/$PDB_name*;
}
else
{
die "ERROR: PDB file ’$PDB_Path/$PDB_name’ was not created!\n";
}

system "rm cif2pdb.err";

system "rm /tmp/file* > /dev/null";



210 The Protein Databank

The result of executing this program is a list of converted PDBs in the specified
directory. It is left as an extended exercise for the reader to work through this
program and determine how it works!?. Note that the backticks surrounding the
cp, CIFTr and mv invocations cause per] to execute the specified command at
the operating system level, returning any results to this program. It is very similar
in operation to Perl’s system subroutine, which is also used here.

Where to from Here

This chapter introduced the Protein Databank, commonly referred to as the PDB.
Both the legacy PDB data format and the modern replacement data format, mmCIF,
were described, and a number of programs - some custom, bespoke and others
available for download as utilities - were used to learn about the PDB and the
data it holds. In the chapters that follow, the theme of Bioinformatics data and
its usage is continued.

The Maxims Repeated
Here’s a list of the maxims introduced in this chapter.

e Beware of anything in the PDB Header Section.

o It is often easier and desirable to regenerate database annotation than trawl
through entries reconstituting the annotation using custom code.

19
This is not a cop-out on the part of your authors. You will often be presented with not much
more than the source code to a program that requires amending. Learning to “read” another
programmer’s source code is a skill worth developing.



11

Non-redundant
Datasets

The importance of non-redundant data.

11.1 Introducing Non-redundant Datasets

This chapter discusses the need for, the problems associated with and the
practical aspects of using non-redundant datasets. The focus of this chapter is
on the PDB, as this is where the redundancy problems are most acute, because
of the limitations of some of the processes used to determine protein structures.
The fundamental concepts described here apply in a wider context.

11.1.1 Reasons for redundancy

There may be many reasons for redundancy in a dataset. With specific reference
to the PDB, these include the following:

1. Scientific - It is often advantageous to study molecules with similar struc-
tures. This is a classic scientific investigative methodology: change a small
part, then identify the change in structure or function to form hypotheses
about the reasons for the change. Consequently, researchers are encouraged
to study similar molecules to those studied previously.

2. Technological limitations - In X-Ray Crystallography, it is easier to obtain
the structure of a molecule that is similar to one that is already known, as

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 0 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X



11.1.2

11.1.3

212 Non-redundant Datasets

molecules with similar conformations are likely to have similar crystallisa-
tion conditions. This, conveniently, allows two of the most difficult aspects
of using X-Ray Crystallography to be dealt with.

Reduction of redundancy

There are two reasons for supporting the reduction of a database:

1. Conceptually, to remove bias within the database. The statistical analysis
based upon the non-redundant dataset will be more representative of all the
items in the database, rather than just the largest dominant group. In the
PDB, the classic example of this activity is the removal of the many (several
hundred) similar Lysozyme structures.

2. As a practical measure, to reduce the computational requirements caused
by analysing examples that are unnecessary. For example, the PDB-Select
structural non-redundant dataset (described below) contains approximately
1600 protein structures, whereas the entire PDB contained approximately
18,000. This ten-fold reduction in size is particularly welcome should an
“all-against-all” dataset comparison be undertaken. For 1600 items, there
are 1.27926 (calculated as comparisons 1,600 x 1,599/2), whereas for 18,000
examples, there are 161.9916 (calculated as 18,000x 17,999/2). The full com-
parison takes approximately 126 times longer than the reduced redundancy
set.

Non-redundancy and non-representative

It is important to realise that a “non-redundant” dataset can contain a subset of
only the parent dataset from which it was produced. Information absent from
the parent database will remain in the dataset, and is not “magically” created by
the removal of other repeated items. Although this may seem obvious, it is an
important point that is easy to forget.

Maxim 11.1 A non-redundant dataset is a subset of its parent dataset.

It is unwise to claim that the conclusions drawn from a non-redundant PDB
dataset is directly applicable to all proteins. Consider the case of membrane-
associated proteins: these exist in close proximity to a lipid environment (inside it
for some sections), which is radically different to the aqueous solution conditions
of most proteins in the PDB. Membrane-bound proteins form less than 1% (about
10 structures) by proportion of the PDB, compared to the 15-30% expected
from genomic prediction studies of trans-membrane helices. However, let’s be
optimistic. Despite what may be missing from a non-redundant version of the
PDB, it still contains a lot of useful information. It is important to acknowledge
that it is actually representative of globular proteins that have structures. If you



11.2

Non-redundant Protein Structures 213

avoid over-extending any conclusions in which they are inappropriate, then any
conclusions drawn should be valid.

Non-redundant Protein Structures

The two most widely used algorithms to prepare non-redundant protein datasets
are PDB-Select and CD-HIT/CD-HI. Both algorithms work in a similar, three-step
way as follows:

1. Calculation of the similarity of the proteins in the PDB based upon their
sequence similarity to each other.

2. Stipulation of a threshold over which proteins are deemed “similar” and
below which they are not.

3. Grouping - or clustering - the proteins and selecting a representative pro-
tein from each group.

PDB-Select lists are prepared every six months! and are widely used for testing
and development of protein structure prediction algorithms. The advanced search
form on the PDB web-sites allows the results returned to be filtered by lists of
different similarity levels, as prepared by the CD-HIT algorithm. This preparation
occurs on a weekly basis. The PDB-Select list at 25% similarity from April 2002 is
used as an example. The list itself can be downloaded via FTP from the PDB-Select
site:

ftp://ftp.embl-heidelberg.de/pub/databases/protein_extras/pdb_select

There is nothing fundamentally wrong with the CD-HIT lists, it is your author’s
personal preference that they are not used.

The above definition of “25% similar” is widely known as the practical limit at
which the commonly used pairwise protein sequence comparison algorithms can
identify related proteins on the basis of amino acid sequence alone. This removes
many copies of the most similar proteins reducing the number of included
examples to something more computationally manageable?, while still giving a
wide spread of structures. Extracts from the downloaded data file are shown in
Figure 11.1 on page 214.

The meanings of the columns are given in the README data file, stored in the
same directory as the downloaded dataset. The first seven columns are of most
interest, and are described as follows:

1And have been since 1992.

2 . . . .
Or at least manageable in terms of bandwidth, especially if you have to download them over
a slow connection!



Non-redundant Datasets

214

*]9SRIRP 1URPUNDII-UOU Pa1denxy T'1T 2SI

(eseodpAyLAde |ouadA B AdeLa]) Bsedl]
pudus

£66D AWOJYD0IAD
pudus

uLd[edoJnew

apLioALod uLpoydouLide

UL | npowoquo.yl

9 uL|hgo|BounuwL

9SBUp paleAllde-3sedsed

deL JoarLqLyuL sisoidode
DLJBWLpoJdalsy Xew-dAW->
JO1BALIDROD J01dadad Jea|dnu
JO1BAL1IDROD J01dod3d Je3|dhu
seJd JO Jossauddns aseuly
pudus

0
eaq u

1T
eaq u

0
XLy u

XLy u

0 €
BBU U Oq U

0 0
BRUTU DQU

[eNeleNeleNeNeoNoBeNeol
M~
foed

6%
BRU U QU
sanpLsaJ

¢
pLsu

pLsTu

133
98
oy
SOT
/8
LTT
[43
65
JA7
6%

X
pyIBW

X
IR

Z2ZZZ2zZzZz=2=22

N

6T"0
B4y

6T°0
R4y

o

QO

[l

(=]

(el

(el
[sNoNeNoNeNeNeNe]
[=NeNeNoNoNaNo Nl

o QO
(=)
o

00°0

PLSTU PYIBW DBy
2/§/67 YiLm suLeyd T//1

00°¢
soy

08°T
say

00°T-
00°1-
00°1-
00°T-
00°T-
00°1-
00°T-
00°1-
00°T-
00°T-
Soy

T2
eeu

6/
eeu

eeu

TVILT
ar

TEST
ar

VMODT
~84ve
- Xave
V801
V4621
V06T
VEGYTZ
GHDIT
VHIDIT
VADIT
ar

114
ysay3

S¢
ysaya

sz
52
52
sz
sz
5z
sz
5z
5z
sz
ysays

13SLL PLOYSRYI %52




Non-redundant Protein Structures 215

1. The threshold value used to prepare the list (25% identity).

2. The PDB identifier of the protein. The first four characters are the PDB
identifier code, the last is the chain identifier with the structure (or *“_"”, if it
is the only chain).

3. The number of amino acids in the structure.

4. The Resolution of the structure for crystallographic structures (or —1.00 to
signal “not applicable” for NMR structures).

5. The R-Factor of the structure for crystallographic structures (or —1.00 to
signal “not applicable” for NMR structures).

6. The number of residues that have backbone atoms reported.

7. The number of residues that have side chain atoms reported.

In the PDB-Select lists, protein chains in the same PDB data file are treated inde-
pendently. Whether this is a tolerable or an unacceptable assumption depends on
what is being studied or researched. For instance, this assumption may well be
a problem when studying the interaction of protein sub-units. Some structures,
such as 1C53 contain only carbon-alpha positions, as shown in the bottom-half of
Figure 11.1 on page 214, while others (1TIA) have a small number of side chains
reported.

The 1TIA structure is particular intriguing: it is an alpha-carbon trace, except
for three of the 271 amino acids that have full side chains. The title of this PDB
is “An unusual buried polar cluster in a family of fungal lipases”, indicating that
this structure was created for a very specific purpose. While very suitable for
this specific study, its use in more general studies is probably limited. It can
be excluded from the study by requiring that over 70% of the side chains be
reported. The program that follows, called select_filter, filters the PDB-Select
list in this way:

#! /usr/bin/perl

# select_filter: designed to filter the PDB-Select Tist

# of alpha-carbon traces.
use strict;
while ( <> )
{

if 1/ 25/)

{

next;
}

my @Fields = split(C " ", $_ ,8 );



216 Non-redundant Datasets

if ( $Fields[ 7 ] / $Fields [ 2 ] > 0.7 )

{
my $ID = substr( $Fields[ 1 1, 0, 4 );
my $Chain = substr( $Fields[ 1 ], 1);
printf( "%3s,%ls: %4i\n", $ID, $Chain, $Fields[ 7 ] );
}
else
{
print "Excluded: ", $Fields[ 1 ], "\n";
3

}

This program processes all lines that start with three spaces and “25”, skipping
those lines that do not. The sp1it subroutine, provided by Perl, breaks the line
into a collection of scalars that are then assigned to the @Fields array. A test is
then performed to see if the ratio of the number of amino acids in the structure
(field 2) relative to the number with side chains (field 7) exceeds 0.7 (or 70%). If
they do, then the chain and ID are split from each other. Note that the combined
code/ID is contained in field 1. An appropriately formatted message is then
displayed on STDOUT.

The select_filter program produces a list that contains the PDB identifier
code, the chain within the data file? and the number of amino acids in that chain.
Here is some sample output:

1KBF,A: 49
1KBH,A: 47
1KBH,B: 59
2A93,A: 32
1C9Q,A: 117
1C9F,A: 87
1G84,A: 105
2ADX, : 40

2AF8,_: 86

Excluded: 1C53_
Excluded: 1TIA_

Of interest is the fact that, as this program executes, it catches other structures
such as 1TIA that has 271 amino acids but only 3 complete side chains. The lines
created by the excluded structures/chains can be removed by piping the output

3 . . . .
Remember: PDB data files may contain one or more protein chains.



Non-redundant Protein Structures 217

of select filter through the grep utility. This command-line excludes, rather
than reports, all lines that contain the pattern “Excluded”, thanks to the use of
the “-v” switch:

./select_filter 2002_Apr.25 | grep -v ’Excluded’

Similarly, select only the excluded structures by removing the “-v” switch, as
follows:

./select_filter 2002_Apr.25 | grep ’Excluded’

It is always a good idea to inspect which structures are being excluded to make
sure the filters are not too stringent.

Maxim 11.2 Be sure to double-check the list of excluded structures.

The 34 structures failing the test criterion are

1C53, 2AT2(A), 1BAX, 1JQL(A), 2ILA, 2MAD(H), 1JQS(B), 13QS(C),
1QCR(F), 1QCR(D), 1QCR(K), 1QCR(G), 1QCR(C), 1EFM, 1TIA, 1FFK(S),
1FFK(U), 1FFK(W), 1FFK(V), 1FFK(J), 1DPI, 1FFK(B), 1FFK(G),
1FFK(F), 1FFK(D), 1FFK(C), 1ILT(A), 3HTC(I), 1AAT, 1IAN, 1JEW(2),
1JEW(4), 1JEW(3), 2DTR.

Ten are in structure 1FFK (the Large Ribosome Sub-unit from “HALOARCULA
MARISMORTUI”) and contain only carbon-alpha atoms. With the list of required
non-redundant protein structures at hand, it is now possible to download them
from the Internet.

Where to from Here

This chapter presented the idea of non-redundant datasets, with specific refer-
ence to the PDB. Of course, storing Bioinformatics data in PDB data files is not
the only option. There are other data formats. Some of these are described in the
next chapter, which also presents a tutorial introduction to an important data
technology: relational database management systems.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

o A non-redundant dataset is a subset of its parent dataset.

e Be sure to double-check the list of excluded structures.



12.1

12

Databases

Learning to talk database.

Introducing Databases

Many modern computer systems store vast amounts of structured data. Typically,
this data is held in a database system. Before defining what’s meant by the term
database system, let’s begin with the term “database’:

A database is a collection of one or more related tables.

The use of the word “related” is important here, as is “table”. The significance of
“related” will soon become clear. For now, let’s define “table”:

A table is a collection of one or more rows of data.

The rows of data are arranged in columns, with each intersection of a row and
column containing a data item. Therefore, the definition of “row” is:

A row is a collection of one or more data items, arranged in columns.

Within a row, the columns conform to a structure. For example, if the first column
in a row holds a date, then every first column in every row must also hold a date.
If the second column holds a name, then every second column must also hold a
name, and so on.

The following data corresponds to the structure just identified, in that there
are two columns, the first holding a date, the second holding a name:

1960-12-21 P. Barry
1954-6-14 M. Moorhouse

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 0 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X



12.1.1

220 Databases

To further cement the notion of structure, each column is given a descriptive
name. Here’s an expanded table of data, with descriptive column names indicated
(additional rows of data have also been added):

1960-12-21 P. Barry
1954-6-14 M. Moorhouse
1970-3-4 J. Blow
2001-12-27 J. Doe

In addition to naming each column, the structure requires that each data item
held in a column be of a specific type. Here’s the type information for the data in
the above table:

Column name Type restriction
Discovery_Date a valid Date
Scientist a String no longer than 64 characters

This type information generally goes by one of two names: metadata or schema.
Think of the word structure as a synonym for both metadata and schema.
Note that the structure restricts the type of data that can be stored in each
column, in addition to - for some columns - specifying the maximum length of
the data item.

Consequently, with the example structure presented above, it is not possible
to store a name in a column that’s expecting a date. Additionally, when a name is
stored in the correct column, it cannot be longer than 64 characters.

In addition to assigning descriptive names and type restrictions to each column,
the entire table is given a name. Let’s call this table Discoveries. It is now
possible to answer a question like “What is the structure of Discoveries?”.

Relating tables

Let's extend the Discoveries table to include details of the discovery. An
additional column is needed to hold the data, as follows:

Discovery_Date Scientist Discovery

1960-12-21 P. Barry Flying car

1954-6-14 M. Moorhouse Telepathic sunglasses
1970-3-4 J. Blow Self cleaning child
2001-12-27 J. Doe Time travel



Introducing Databases 221

The inclusion of this new column requires an update to the structure of the table.
Here is a revised structure for Discoveries:

Column name Type restriction

Discovery_Date a valid Date

Scientist a String no longer than 64 characters
Discovery a String no longer than 128 characters

Now, let’s assume there is a requirement to maintain additional data about each
scientist, specifically their date of birth and telephone number. This data is
referred to as the scientist’s identification information, and guards against the
problems that can occur when two scientists have the same name. For instance, if
there are two (mad) scientists called “M. Moorhouse”, the original table structure
cannot distinguish between them. However, as it is highly unlikely that both
scientists share the same date of birth and telephone number, these data items
can be added to the table to guard against incorrect identifications. The structure
of the Discoveries table is now:

Column name Type restriction

Discovery_Date a valid Date

Scientist a String no longer than 64 characters
Discovery a String no longer than 128 characters
Date_of_birth a valid Date

Telephone_number a String no longer than 16 characters

The data in the table now looks like this!:

Discovery_Date Scientist Discovery Date_of_birth Telephone_number
1960-12-21 P. Barry Flying car 1966-11-18 353-503-555-91910
1954-6-14 M. Moorhouse Telepathic sunglasses 1970-3-24 00-44-81-555-3232
1970-3-4 J. Blow Self cleaning child 1955-8-17 555-2837
2001-12-27 J. Doe Time travel 1962-12-1 -

1974-3-17 M. Moorhouse Memory swapping toupee 1970-3-24 00-44-81-555-3232
1999-12-31 M. Moorhouse Twenty six hour clock 1958-7-12 416-555-2000

This version of the Discoveries table contains three rows for scientist M.
Moorhouse. By examining the Date_of_birth column, it is clear that there are
two different scientists.

1
If you're thinking these dates correspond to your author’s actual birth dates, think again.
This data is obviously fictitious. Of course, if anyone has managed to invent a self-cleaning child,
please let Paul know.



12.1.2

12.1.3

222 Databases

The problem with single-table databases

Although the above table structure solves the problem of uniquely identifying
each scientist, it introduces some other problems, including:

1. If a scientist is responsible for a large number of discoveries, their identi-
fication information has to be entered into every row of data that refers to
them. This is time-consuming and wasteful.

2. Every time identification information is added to a row for a particular
scientist, it has to be entered in exactly the same way as the identification
information added already. Despite the best of efforts, this level of accuracy
is often difficult to achieve. In most cases, the slightly different identification
information will be assumed to refer to a different scientist.

3. If a scientist changes any identification information, every row in the table
that refers to the scientist’s discoveries has to be changed. This is drudgery.

Solving the one-table problem

Ideally, the identification information should exist in only one place. A mechanism
should provide for linking each scientist referred to in the Discoveries table to
the identification information.

The problems described in the previous section are solved by breaking the
all-in-one Discoveries table into two tables. Here is a new structure for Dis-
coveries:

Column name Type restriction

Discovery_Date a valid Date

Scientist_ID a String no longer than 8 characters
Discovery a String no Tonger than 128 characters

The Discoveries table reverts to three columns per row of data. The second
column, originally called Scientist, is now called Scientist_ID. Its type infor-
mation has also changed, from a string of up to 64 characters to one of up to 8
characters. Here is the structure for a new table, called Scientists:

Scientist_ID a String no longer than 8 characters
Scientist a String no longer than 64 characters
Date_of_birth a valid Date

Address a String no Tonger than 256 characters
Telephone_number a String no longer than 16 characters



Introducing Databases 223

The Scientists table also critically contains a column called Scientist_ID,
which has type information identical to the corresponding column in the Dis-
coveries table. The Scientist column from the original Discoveries table,
as well as the identification information from the all-in-one Discoveries table,
makes up the remainder of the columns in Scientists, together with a new
column called Address.

When a new scientist comes along, a row of data is added to the Scientists
table. A unique 8-character Scientist ID is assigned to the scientist. When the
same scientist discovers something, the details of the discovery are added to the
Discoveries table. The unique Scientist_IDis used to link, or relate, the row of
data in Discoveries to the scientist’s identification information in Scientists.
So Discoveries now contains data like this:

1954-6-14 MM Telepathic sunglasses
1960-12-21 PB Flying car

1969-8-1 PB A cure for bad jokes
1970-3-4 JB Self cleaning child
1974-3-17 MM Memory swapping toupee
1999-12-31 MM2 Twenty six hour clock
2001-12-27 D Time travel

While the Scientists table contains this data:

Scientist_ID Scientist Date_of_birth Address Telephone_number
JB J. Blow 1955-8-17 Belfast, NI 555-2837

JD J. Doe 1962-12-1 Sydney, AUS -

MM M. Moorhouse 1970-3-24 England, UK 00-44-81-555-3232
MM2 M. Moorhouse 1958-7-12 Toronto, CA 416-555-2000

PB P. Barry 1966-11-18 Carlow, IRL 353-503-555-91910

Note that despite the fact that there are two scientists called M. Moorhouse, the
rows of data that refer to their respective discoveries (in the Discoveries table)
are easily distinguished, as “MM” identifies the English Moorhouse, whereas
“MM2” identifies the Canadian.

Changes to any scientist’s identification information no longer impact the
Discoveries table, as only the data in the Scientists table is changed.

Technical Commentary: Obviously, this last statement is not true when the change
to the row in Scientists results in the value for Scientist_ID changing. In this
case, every row of data in Discoveries that refers to the old Scientist_ID needs
to change. Such changes, while certainly possible, are rarely justifiable.



12.1.4

12.2

224 Databases

This technique of relating data in one table to that in another forms the basis
of modern database theory. It also explains why so many modern database tech-
nologies are referred to as Relational Database Management Systems (RDBMS).

When a collection of tables is designed to relate to each other, as is the case with
Discoveries and Scientists, they are collectively referred to as a database. It
is usually a requirement to give the database a descriptive name.

Taking the time to think about how data relates to other data in a database is
important and very worthwhile. It is so important that it warrants its very own
maxim.

Maxim 12.1 A little database design goes a long way.

Database system: a definition

With the terms database, table, row, column and structure defined, it is now
possible to return to the definition of “database system’:

A database system is a computer program (or a group of programs) that
provides a mechanism to define and manipulate one or more databases.

Recall from the last section that a database contains one or more tables, and that
a table contains one of more rows of columned data that conform to a defined
structure. A database system allows databases, tables and columns to be created
and named, and structures to be defined. It provides mechanisms to add, remove,
update and interact with the data in the database. Data stored in tables can be
searched, sorted, sliced, diced and cross-referenced. Reports can be generated,
and calculations can be performed.

Many database systems can be extended, allowing automated interaction to
occur from many programming technologies. As the next chapter will show,
combining a database system with Perl is a powerful combination. But let’s not get
ahead of ourselves. There’s additional foundation material to work through first.

After a brief survey of available database systems, the remainder of this chapter
is dedicated to presenting a database case study. Bioinformatics data is used to
populate a database, and then a series of interactions with the data are described.
Along the way, the reader is exposed to SQL and the MySQL database system.

Available Database Systems

There are a large number of database systems to choose from. A simple categori-
sation by type of database system is as follows:

e Personal

e Enterprise

e Open source.



12.2.1

12.2.2

12.2.3

Available Database Systems 225

Which type of database system is chosen depends on a number of factors,
including (but not limited to):

1. The amount of data to be stored in the database.

2. Whether the data supports a small personal project or a large collabora-
tive one.

3. How much funds (if any) are available towards the purchase of a database
system.

Personal database systems

The database systems in this category are designed to run on any personal com-
puter, and they typically - though not exclusively - target the Microsoft Windows
graphical environment. Because of their PC heritage, they are good for small per-
sonal projects, but generally scale poorly: as the amount of data in the database
grows, the performance of these database systems degrade to the point where
they become unusable. That said, most databases in the category can comfortably
handle a multi-megabyte database.

Example technologies in this category include Access, Paradox, FileMaker and
the dBase family of databases.

Enterprise database systems

At the other end of the spectrum, the database systems in this category are
designed to support the efficient storage and retrieval of vast amounts of data.
Unlike the technologies in the Personal category, Enterprise database systems
can handle multi-gigabyte and increasingly multi-terabyte databases, and are
designed to provide access for multiple, simultaneous users. It is possible to
use an Enterprise database system for a personal project, but such practice is
generally considered to be overkill. It is also possible to run the database systems
in this category on standard personal computers (running operating systems
such as Windows, Mac OS X and Linux), but they are designed to execute on larger
enterprise-class computers such as mainframes, mini-computers or high-end
servers.

Example technologies in this category include InterBase, Ingres, SQL Server,
Informix, DB2 and Oracle.

Open source database systems

A significant factor differentiates the database systems found in the Personal
and Enterprise categories from those found in the Open Source category: cost.
The database technologies in the Personal category typically cost several hun-
dred euro, whereas those in the Enterprise category range in cost from several



12.3

12.3.1

226 Databases

thousands to several tens of thousand euro (and sometimes more). In stark
contrast, Open Source database systems are freely available on-line.

As a direct result of their Linux heritage, Open Source database technolo-
gies tend to perform equally well within a personal and an enterprise setting.
Consequently, Open Source database technologies neatly fill the gap that exists
between the personal and enterprise database worlds. Multi-megabyte and giga-
byte databases can be accommodated without too much difficulty.

Example technologies in this category include PostgreSQL and MySQL.

SQL: The Language of Databases

If there is one technology that unites all of the technologies found in the Personal,
Enterprise and Open Source database categories, that technology is SQL. SQL is
shorthand for Structured Query Language and has a heritage that dates to the
late 1960s.

The SQL component built into most modern database systems typically pro-
vides two facilities:

1. A Database Definition Language (DDL) and
2. A Data Manipulation Language (DML).

Prior to the arrival of SQL, every database system provided proprietary mech-
anisms for defining databases and then manipulating the data stored within
them. To use these database systems efficiently, some knowledge of how the
data was stored within the database system was required, and the effort required
to acquire this specialised knowledge was considerable. Moving data from one
database system to another was possible, but rarely considered, as the learn-
ing curve associated with the transition to an alternative database technology
was often considerable. The skills acquired when working with one particular
database system were generally not transferable to another.

The introduction, promotion and subsequent adoption of SQL as an integrated
database system component changed all this.

Not only did SQL provide a standard mechanism for defining and manipulating
data but also removed the requirement to understand the way in which the
data within the database system was stored. This was a huge advantage. As the
majority of database systems adopted SQL, users acquired a transferable skill
that no longer bound them to a single database system (or database vendor).

Defining data with SQL

The data definition component of SQL provides a mechanism whereby databases
can be created. Within a created database, SQL allows tables to be defined as rows



12.3.2

12.4

A Database Case Study: MER 227

of columned data conforming to a structure. Table structures can be changed,
and tables can be renamed or deleted.

Manipulating data with SQL

The data manipulation component of SQL provides a mechanism to work with
data in tables. Mechanisms exist to add data to tables a single row at a time, or
in bulk (more than one row at a time). Rows can also be removed from tables.

SQL provides a powerful mechanism to search data in tables and extract row
data. It is possible to extract an entire row of columned data or to specify
that only certain columns are to be included in the extract. Critically, the SQL
search-and-extract mechanism can be used to relate data in one table to that in
another.

Technical Commentary: A common question centres around the correct pro-
nunciation of “SQL”. Typically - although not exclusively - persons of a European
persuasion tend to pronounce each letter individually: “S Q L”. North Americans
tend to pronounce SQL as “sequel”, in honour of one of the earliest database tech-
nologies that provided SQL as an integrated component. It does not really matter
which pronunciation is used, just so long as the use is consistent.

A Database Case Study: MER

The Swiss Institute of Bioinformatics maintains SWISS-PROT, an annotated protein
sequence database. Unlike the example database from the start of this chapter,
the SWISS-PROT database is not maintained as a collection of tables. Instead,
the SWISS-PROT database uses what’s commonly referred to as a flat-file (or
text-based) format to represent protein structures. The protein data is stored as
text in data files.

The SWISS-PROT database does define a specific structure for the contents of
the data file, which can contain one or more protein structures. Each structure is
referred to as an entry. The SWISS-PROT data format is described in detail in the
SWISS-PROT manual, which is available at:

http://www.expasy.org/sprot/userman.html

Obviously, the definition of “database” as it relates to SWISS-PROT is somewhat
different to the definition from earlier in this chapter. Although the SWISS-PROT
definition of “database” may be confusing to some readers, it is acceptable as the
meaning of the word “database” can vary depending on context. When working
with RDBMSs, “database’ is defined as a collection of one or more related tables.
When working with SWISS-PROT data files, “database” is defined as a collection
of similarly formatted flat files.

The SWISS-PROT structure is designed to be highly compatible with that of
the EMBL Nucleotide Sequence Database. The EMBL database is maintained by



228 Databases

the EMBL Outstation at the European Bioinformatics Institute. Unlike SWISS-PROT,
which stores data on protein structures, the EMBL database stores DNA sequence
data. Like SWISS-PROT, the data in the EMBL database is a collection of similarly
formatted, text-based data files.

With modern database systems now in widespread use, one might be forgiven
for asking why the data in these two important databases is provided in its
current form. Why not use an RDBMS? This answer is taken from the on-line
documentation to the EMBL database:

“An attempt has been made to make the collected data as easily acces-
sible as possible without restricting their usefulness to a particular
type of computing environment. For this reason, the simplest possible
organisation (‘flat file’) has been chosen.”

The entire EMBL manual is available at this web-site:

http://www.ebi.ac.uk/emb1/Documentation/User_manual/home.html

By choosing a simple, open format, the SWISS-PROT and EMBL databases can be
put to many different uses. Here’s an example SWISS-PROT entry:

ID MERT_ACICA STANDARD; PRT; 116 AA.

AC  Q52106;

DT  01-NOV-1997 (Rel. 35, Created)

DT  01-NOV-1997 (Rel. 35, Last sequence update)

DT 15-JUN-2002 (Rel. 41, Last annotation update)

DE  Mercuric transport protein (Mercury ion transport protein).

GN MERT.

0S Acinetobacter calcoaceticus.

0G Plasmid pKLH2.

0oC Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales;
0C Moraxellaceae; Acinetobacter.

0X  NCBI_TaxID=471;

RN [1]

RP SEQUENCE FROM N.A.

RX  MEDLINE=94134837; PubMed=8302940;

RA Kholodii G.Y., Lomovskaya 0.L., Gorlenko Z.M., Mindlin S.Z.,

RA  Yurieva 0.V., Nikiforov V.G.;

RT "Molecular characterization of an aberrant mercury resistance
RT  transposable element from an environmental Acinetobacter strain.";
RL  Plasmid 30:303-308(1993).

ccC -1- FUNCTION: INVOLVED IN MERCURIC TRANSPORT. PASSES A HG(2+) ION

cc FROM THE PERIPLASMIC MERP PROTEIN TO THE MERCURIC REDUCTASE

cc (MERA) .

CC  -!- SUBCELLULAR LOCATION: INTEGRAL MEMBRANE PROTEIN. INNER MEMBRANE

cC (BY SIMILARITY).

CC

CC  This SWISS-PROT entry is copyright. It is produced through a collaboration
CC  between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC  the European Bioinformatics Institute. There are no restrictions on its
CC use by non-profit dnstitutions as long as its content 1is 1in no way
CC modified and this statement is not removed. Usage by and for commercial
CC entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC  or send an email to license@isb-sib.ch).



//

A Database Case Study: MER 229

EMBL; AF213017; AAA19679.1; -.

InterPro; IPR003457; Transprt_MerT.

Pfam; PF02411; MerT; 1.

Transport; Mercuric resistance; Inner membrane; Mercury; Plasmid;
Transmembrane.

TRANSMEM 16 36 POTENTIAL.

TRANSMEM 46 66 POTENTIAL.

TRANSMEM 94 114 POTENTIAL.

METAL 24 24 HG(2+) (BY SIMILARITY).
METAL 25 25 HG(2+) (BY SIMILARITY).
METAL 76 76 HG(2+) (BY SIMILARITY).
METAL 82 82 HG(2+) (BY SIMILARITY).

SEQUENCE 116 AA; 12510 MW; 2930A92CF88EB10F CRC64;
MSEPQNGRGA LFAGGLAAIL ASACCLGPLV LIALGFSGAW IGNLTVLEPY RPIFIGAALV
ALFFAWRRIV RPTAACKPGE VCAIPQVRTT YKLIFWFVAV LVLVALGFPY VMPFFY

The exact meaning of each line type in this SWISS-PROT entry is described in
the SWISS-PROT manual. Although convenient for humans (the entry is easy to

read)

, processing the entry by computer is complicated by a number of factors,

including the following:

1.

Not all SWISS-PROT line types are required. A number of the line types are
optional. The above entry, for example, does not contain the optional RC
line type, which refers to a Reference Comment.

Some of the line types can extend over any number of lines. For example,
the CC line type, which refers to a Comment, extends over 14 lines in the
above entry.

. Other line types, for example the RN line type, which refers to a citation

Reference Number, contain a block of line types, some of which are optional
and some of which can extend over a number of lines. Note that the RA line
type, which refers to the Reference Author(s), and the RT line type, which
refers to the Reference Title, both extend over two lines in the above entry.
As described in point 1, the RC line type is not used in this RN entry.

These factors make processing SWISS-PROT entries a challenge. Luckily, Perl is
on our side and, as will be demonstrated shortly, Perl is a natural at working with
this type of data.

The EMBL data format is similar to SWISS-PROT?Z. Here’s an abridged example

EMBL entry:
ID PPMERR standard; DNA; UNC; 2923 BP.
XX
AC M24940;
XX
SV M24940.1
XX

DT

02-FEB-1990 (Rel. 22, Created)

2
In fact, the SWISS-PROT format was designed to be highly complementary to the EMBL format,

which

predates the SWISS-PROT database by a number of years.



230

DT
XX
DE
DE
XX
KW
XX
0s
oc
0G
XX
RN
RP
RX
RA
RT
RT
RL
XX
DR
DR
DR
DR
DR
DR
DR
DR
XX
cc
cc
XX
FH
FH
FT
FT
FT
FT
FT
FT
FT
FT
FT
FT
FT
FT
FT
FT
FT
FT
FT
FT

XX
SQ

Databases

06-JUL-1999 (Rel. 60, Last updated, Version 3)

Plasmid pDU1358 (from Serratia marcescens) mercury resistance protein genes

merR, merP

merA gene;

and merT, complete cds, and merA gene, 5’ end.

mercury resistance protein; merP gene; merR gene; merT gene.

PTasmid pDU1358

plasmids.

Plasmid pDU1358

[1]
1-2923

MEDLINE; 89327136.

Nucifora G.

, Chu L., Silver S., Misra T.K.;

"Mercury operon regulation by the merR gene of the organomercurial

resistance

system of plasmid pDU1358";

J. Bacteriol. 171(8):4241-4247(1989).

GOA; P08662; P08662.
GOA; P13111; P13111.
GOA; P13112; P13112.
GOA; P13113; P13113.

SWISS-PROT;
SWISS-PROT;
SWISS-PROT;
SWISS-PROT;

P08662; MERA_SERMA.
P13111; MERR_SERMA.
P13112; MERT_SERMA.
P13113; MERP_SERMA.

Draft entry and computer-readable sequence for [1] kindly provided
by Nucifora,G. 13-JUN-1989.

Key

source

gene

cbs

Location/Qualifiers

1..2923

/db_xref="taxon:2547"

/organism="Plasmid pDU1358"

/plasmid="pDU1358"

/specific_host="Serratia marcescens"

complement(677..1111)

/gene="merR"

complement(677..1111)

/codon_start=1

/db_xref="GOA:P13111"

/db_xref="SWISS-PROT:P13111"

/trans1_table=11

/gene="merR"

/product="mercury resistance protein"
/protein_id="AAA98221.1"
/transTlation="MEKNLENLTIGVFAKAAGVNVETIRFYQRKGLLPEPDKPYGSIRR
YGEADVTRVRFVKSAQRLGFSLDETAELLRLDDGTHCEEASSLAEHKLQDVREKMTDLA
RMETVLSELVFACHARQGNVSCPLIASLQGEKEPRGADAV"

Sequence 2923 BP; 617 A; 882 C; 820 G; 604 T; O other;

ttaatctgct
aagaggcaaa
gggaacgcta
atcctgaacc

caacaagata gtgataatgc tgttgtaatt tagcaataac tggctaggta 60
ctattatcct caagaatggt actcagtcgg ctaataacgg cagctcctcg 120
atgccaaatt ccagcagaaa agcatgcatt tgattggttg ttttcacctt 180

agggattcac ggacacgatg cagagcccgc attgcctgct gagattccgt 240



12.4.1

A Database Case Study: MER 231

acccgtccat cggcgaggcc gtcacagccg ctttccgtgc cgaagggatc aaggtactgg 2880
aacacacgca agccagccag gtcgcgcatg tgaacggcga att 2923
//

Processing EMBL entries is complicated by similar factors to those discussed
above in relation to the SWISS-PROT entries. However, the inclusion of the XX line
type, which refers to a separator line, can help when processing EMBLs.

The requirement for the MER database

A small collection of SWISS-PROT and EMBL entries are taken from the Mer
Operon, a bacterial gene cluster that is found in many bacteria for the detoxifica-
tion of Mercury Hg2+ ions. These provide the raw data to a database, which is
called MER. The MER database contains four tables:

proteins - A table of protein structure details, extracted from a collection of
SWISS-PROT entries.

dnas - A table of DNA sequence details, extracted from a collection of EMBL
entries.

crossrefs - A table that links the extracted protein structures to the extracted
DNA sequences.

citations - A table of literature citations extracted from both the SWISS-PROT
and EMBL DNA entries.

Once the raw data is in the database, SQL can be used to answer questions about
the data, for instance:

1. How many protein structures in the database are longer than 200 amino
acids in length?

2. How many DNA sequences in the database are longer than 4000 bases in
length?

3. What’s the largest DNA sequence in the database?

4. Which protein structures are cross-referenced with which DNA sequences?

5. Which literature citations reference the results from the previous question?
Of course, it is possible to determine answers to these questions manually, as
follows:

e Print out all the SWISS-PROT and EMBL entries of interest.

o Sift through the printouts visually, noting the data of interest.



12.4.2

232 Databases

which is probably (depending on the number of entries examined) no more than a
few hours’ work. A computer program could be written to automate the collection
of the interesting pieces of data, which would probably reduce the amount of
time required from hours to tens of minutes, depending on how complicated
the computer programs are and whether they have to be written from scratch.
Compare tens of minutes and a few hours to the length of time it takes an
SQL-capable database system to answer each of these questions: no more than a
few seconds.

Installing a database system

MySQL is a modern, capable and SQL-enabled database system. It is Open Source
and freely available for download from the MySQL web-site:

http://www.mysql.com

Especially well-written documentation, in the form of the MySQL Manual, is
also available for download in a number of formats, including HTML and PDF.
At over 800 pages, this may be all the documentation most MySQL users ever
need. However, a good collection of third-party texts also exist (see Appendix D,
Suggestions for Further Reading, for some recommendations).

MySQL is so popular that it comes as a standard, installable component of most
Linux distributions, and is the database system of choice within Bioinformatics,
Biocomputing and Perl. However, as far as is possible, the material presented in
this chapter is database system neutral: most commands should work unaltered
with any modern database system, not just with MySQL.

The following commands switch on MySQL on RedHat and RedHat-like Linux
distributions3:

chkconfig --add mysqld
chkconfig mysqld on

If the first chkconfig* command produces an error messages like this:

error reading information on service mysqld: No such file or directory

This means that MySQL is not installed and the second command will also fail.
Check the CD-ROMs that came with the Linux distribution to see if the required
software is available, or download MySQL from its web-site. Be careful to read
and follow the installation instructions as described on the MySQL web-site and
in the MySQL Manual.

3 . o .
But may not work on your Linux distribution: check your documentation.

4 . .
To learn about chkconfig, type “man chkconfig” at the Linux prompt.



12.4.3

A Database Case Study: MER 233

Once MySQL is installed, it needs to be configured. The first requirement is to
assign a password to the MySQL superuser, known as “root”. The mysqladmin
program does this, as follows:

mysgladmin -u root password ’passwordhere’

It is now possible to securely access the MySQL Monitor command-line utility
with the following command, providing the correct password when prompted:

mysql -u root -p

The MySQL Monitor is an interactive, command-line tool that comes with MySQL. It
can be used to issue SQL queries® to the MySQL database system. If the password
was entered successfully, the MySQL Monitor command-prompt appears. It looks
like this:

mysql>

Certain actions can be performed only within MySQL when operating as the
superuser. These actions include the ability to create a new database.

Creating the MER database

SQL queries can be entered directly at the MySQL Monitor prompt. Let’s use an
SQL DDL query, CREATE DATABASE, to create a database called MER. Note that
throughout this section, the typed query is shown in an italic font:

mysql> create database MER;

This, if successful, should produce the following - rather cryptic - message from
MySQL:

Query OK, 1 row affected (0.36 sec)

MySQL confirms that the entered SQL query was OK. Be advised that interactive
SQL queries are terminated by a semicolon, the “;” character. The MySQL Monitor
does not execute the query until it sees the semicolon, so be careful to always
include it at the end of each query.

The “1 row affected” part of the message refers to the fact that MER has
been added as a database within the system. As might be expected, MySQL uses
internal tables to store this “system information”. To view the list of databases
in the system, use the SHOW DATABASES query. Here’s the query, together with
the results returned from the MySQL Monitor:

’In SQL-speak, the word “query” has the same meaning as “command”.



234 Databases

mysql> show databases;

Fommmmmmm - +
| Databases |
Fommmmmmm - +
| MER |
| test |
| mysql |
Fommmm - +

3 rows in set (0.00 sec)

A list of databases is returned by MySQL. This particular list was produced on
Paul’s laptop, which is running a default installation of MySQL (version 3.23).
There are three identified databases:

MER - The just-created database that will store details on the extracted protein
structures, DNA sequences, cross references and literature citations.

test - A small test database that is used by MySQL and other technologies to
test the integrity of the MySQL installation.

mysql - The database that stores the internal “system information” used by the
MySQL database system.

Technical Commentary: Throughout this chapter, when a snippet of SQL or an
SQL query is described in the text, it is always shown in UPPERCASE. As can be seen
from the interactive examples, SQL queries can be entered into the MySQL Monitor
in lowercase. It makes no difference to MySQL whether uppercase or lowercase is
used when entering SQL. With some other database systems, case is important, so
be sure to check the documentation.

Itis possible to use the MySQL superuser to create tables within the MER database.
However, it is better practice to create a user within the database system to have
authority over the database, and then perform all operations on the MER database
as this user. The queries to do this are entered at the MySQL Monitor prompt.
Here are the queries and the messages returned:

mysql> use mysql;
Database changed

mysql> grant all on MER.* to bbp identified by ’passwordhere’;
Query OK. O rows affected (0.00 sec)

The first query tells MySQL that any subsequent queries are to be applied to the
named database, which in this case is the mysq1 database. The message returned
confirms this. The second query does three things:

1. It creates a new MySQL user called “bbp”.

2. It assigns a password with the value of “passwordhere” to user “bbp”.

3. It grants every available privilege relating to the MER database to “bbp”.



12.4.4

A Database Case Study: MER 235

Note that all of the above queries are terminated by the required semicolon. With
the “bbp” user created, and appropriate rights granted, the MySQL Monitor can
be exited by typing QUIT at the prompt:

mysql> quit
Bye

The MER database and the “bbp” user now exist within the MySQL database
system. The next task is to create the required tables within the database.

Adding tables to the MER database

The ability to interactively type an SQL query into the MySQL Monitor and execute
it can be very convenient, especially when the amount to type is small. For larger
tasks (which involve more typing), it is often better to put the SQL query in a text
file and then “feed” it to the MySQL Monitor from the Linux command-line. For
instance, assume a text file called create_proteins.sql contains the SQL DDL
queries to create an appropriately structured proteins table. This text file can
be fed to the MySQL Monitor with the following command:

mysql -u bbp -p MER < create_proteins.sql

The “<” character redirects the contents of the create_proteins.sql text file
and sends it to the MySQL monitor as standard input. Note how the database to
use, MER, is specified on the command-line.

Technical Commentary: If a message similar to “ERROR 1045: Access denied for
user: ‘bbp@localhost’ (Using password: YES)” appears at this stage, don’t fret. MySQL
is supplied with an anonymous user enabled, and this user can sometimes cause
problems. Remove the anonymous user from the MySQL system by issuing these

commands as root: “use mysql;”, “delete from user where User = ;7 and
“flush privileges;”. That should fix the problem.

The create_proteins.sql text file contains a valid CREATE TABLE query. This
is the SQL DDL query that defines the structure for, and creates a new table in, a
database.

Before examining the contents of create proteins.sql, let’s return to the
SWISS-PROT entry from earlier and highlight the data that populates the pro-
teins table. However, before proceeding, let’s have another maxim.

Maxim 12.2 Understand the data before designing the tables.

As the intention is to show the correct process to go through when designing,
creating and populating a table, only a subset of the available line types are
extracted from each SWISS-PROT entry for eventual inclusion in the table.

Referring back to the SWISS-PROT entry on page 228, the line types to be
extracted are as follows:



236 Databases

e ID - The identification tag, specifically the mnemonic code and species
sub-parts of the ID tag.

e AC - The accession number.

o DT - The date, specifically the last of the three dates provided.

e DE - The description.

e SQ - The sequence header, with a specific extraction of the sequence length.

o The actual sequence data (which has a blank line type).
For reasons that will become clear later, the order of these line types in the
proteins table is AC, ID (code sub-part), ID (species sub-part), DT, DE, SQ,
sequence length and then the sequence data.

That’s a total of eight columns per row of data in the table. With this in mind,

let’s examine the contents of the create_proteins.sql text file (which has been
formatted with plenty of whitespace to make it easy to read):

create table proteins

(
accession_number varchar (6) not null,
code varchar (4) not null,
species varchar (5) not null,
last_date date not null,
description text not null,
sequence_header varchar (75) not null,
sequence_length 1int not null,
sequence_data text not null

)

A single CREATE TABLE query defines and creates the proteins table. Note the
format used on each column specification line:

Column name - This is also referred to as the field name, and it uniquely identi-
fies the columned data item within the table row.

Column type - This restricts the type of data that can be stored in the column.
There are a number of different column types supported by MySQL, and the
proteins table uses four of them:

1. The varchar type restriction is a string, which can vary in length from
0 to 255 characters.
2. The date type restriction is a valid date in YYYY-MM-DD format.

3. The text type restriction is a sequence of text from 0 to 65,535
characters in size.



A Database Case Study: MER 237

4. The int type restriction is a number in the range —2,147,483,648 to
2,147,483,647.

Column length - An optional maximum length for the data item stored in the
column. For the proteins table, each of the varchar columns indicates the
largest string that can be stored in the data item, by including the maximum
length value in parentheses.

Column specifier - An optional null specifier that can be used to indicate that
data must be entered into the column. All of the columns in proteins are
specified to be NOT NULL, which means that data must be provided for
every column in the row.

Each column specification (expect for the last) ends with a comma, “,”’, and the
entire list of fields is enclosed in parentheses, “(” and *)”. Note that when fed to
the MySQL Monitor from the command-line, this SQL DDL query does not need to
end with a semicolon, as the use of the semicolon is implied.

With the table created, use the MySQL Monitor to access the MER database and
issue a SHOW TABLES query against the database, as follows:

mysql -u bbp -p MER

mysql> show tables;

RGP E TPt +
| Tables_in_MER |
RGP E TPt +
| proteins |
L PP E LR +

1 row in set (0.00 sec)

It is also possible to ask MySQL to provide details on the structure of the
proteins table using the DESCRIBE query, as follows:

mysql> describe proteins;

R EEEE PRt e LTt +--——-- +--——- F-mmmm - +-——-——- +
| Field | Type | Null | Key | Default | Extra |
Rl et DLl R i +------ +----- fommmmm - +------ +
| accession_number | varchar(6) | | | | |
| code | varchar(4) | | | | |
| species | varchar(5) | | | | |
| Tast_date | date | | | 0000-00-00 | |
| description | text | | | | |
| sequence_header | varchar(75) | | | | |
| sequence_length | int(11) | | | O | |
| sequence_data | text | | | | |
o Fommmm - +----=- +--=-== e F-—m---- +

8 rows 1in set (0.04 sec)



12.4.5

238 Databases

Additional information is provided on each column, over and above the name and
type restriction. Refer to the MySQL Manual for more details and the meaning of
these additional data.

With the table ready, the next task is to populate it with data derived from a
collection of SWISS-PROT entries.

Preparing SWISS-PROT data for importation

There are two common techniques for populating a table with data. The first is
to use an SQL DML query, INSERT, to add data one row at a time, via MySQL
Monitor. This is effective only when a small amount of row data is to be added
to a table. When a large amount of data is to be added, most modern database
systems provide a mechanism to import data in bulk from a correctly formed
data file. Such a mechanism is provided by MySQL.

MySQL expects data files that contain importable data to be tab-delimited, with
each row of data on its own line. This means that each piece of columned data
in a row is separated from the next by the tab character (often written as “\t”),
and each row is separated from the next by the newline character (often written
as ‘“\n”).

Obviously, this is a very different format to that used by SWISS-PROT. What's
required is a mechanism to convert the SWISS-PROT entry into a tab-delimited line
of data that MySQL can import into the proteins table. As described on page 229,
this is complicated by a number of factors. However, with Perl, these complicating
factors can be dealt with without too much difficulty. The conversion strategy is
as follows:

1. Process the SWISS-PROT data file by examining each entry one line at a time.

2. For each line, perform a series of pattern matches against the line in order
to determine the line type.

3. When a line type of interest is matched, extract any interesting data from
the line, and use the extracted data to construct the tab-delimited line of
data.

4. When an entire tab-delimited line has been constructed, print it to the
screen.

5. Process the next SWISS-PROT entry by returning to point 2 above, and
iterate.

6. Finish when there are no more lines of input.

The tab-delimited line must conform to the following format in order to allow
for bulk-importation into the proteins table:

e An accession number, extracted from the AC line.

e A tab character.



A Database Case Study: MER 239

The mnemonic code of the protein name, extracted from the ID line.
A tab character.

The mnemonic species identification code, extracted from the ID line.
A tab character.

A date (in YYYY-MM-DD format) extracted and converted from the last DT
line. Note: the SWISS-PROT date format is DD-MMM-YYYY.

A tab character.

A description copied from any DT lines.

A tab character.

A sequence header copied from the SQ line.

A tab character.

The sequence length, extracted from the SQ line.

A tab character.

The sequence data copied from any sequence data lines.

A newline character.

With the strategy determined, let’s examine the get_proteins program, which
takes any collection of SWISS-PROT entries and converts them into correctly
formatted tab-delimited lines:

#! /usr/bin/perl -w

# get_proteins - given a list of SWISS-PROT files, extract data

# from them in preparation for importation into a database system.
#

# Note that the results produced are TAB-delimited.

BEGIN {
push @INC, "$ENV{'HOME’}/bbp/";
}

use UsefulUtils qw( biodb2mysql );
use strict;

my ( $table_line, $code, $species );
while ( <> )

' if C/°7ID CH_G+D) /)

( $code, $species ) = ( $1, $2 );



240

Databases

}
if ( /AC (.+7)5/ )
{
$table_line = $1 . "\t" . $code . "\t"

while ( <> )

{
last unless /"AC/;
3
}
if ¢ /°DT/ )
{
my $date_line = $_;
while ( <> )
{

Tast unless /°DT/;
$date_Tine = $_;

3

$date_line =~ /°DT .+?) /;

$table_line = $table_line . biodb2mysq1( $1 )

}
if ¢ /'DE (.4)/ )

{ my $descr_lines = $1;
while ( <> )
! Tast unless /'DE  (.+)/;
$descr_lines = $descr_lines . * ’ .
itab1e_1ine = $table_line . $descr_lines
if c/°sQ  G+/)

my S$header = $1;

$header =~ /(\d+)/;

$table_line = $table_1line . $header . "\t" . $1

}

if ¢/ 9/

{
my $sequence_lines = $1;
while ( <> )

it (ml"//1)
{

3

last;

. $species .

BN

"\t

AN

L\t



A Database Case Study: MER 241

else
{
/" C.9/;
$sequence_lines = $sequence_lines . $1;
}
}

$table_line = $table_line . $sequence_lines;
}
if (ml["//]1)
{

print "$table_Tine\n";
$table_line = ’’;

3

Let’s describe the workings of this program in detail. Take a moment to print
out a SWISS-PROT entry so that it can be referred to while working through the
description of this program.

After the standard first line and a comment, a BEGIN block pushes the location
of the Bioinformatics, Biocomputing and Perl shared code directory onto the @INC
array. This allows the program to find the utilities module developed in the
Getting Organised chapterS. A use of the utilities module comes immediately
after the BEGIN block. Note the explicit mention of the biodb2mysqTl subroutine,
which is used to convert the SWISS-PROT formatted date into a date format that
is acceptable to MySQL:

BEGIN {
push @INC, "$ENV{’HOME’}/bbp/";

}
use UsefulUtils qw( biodb2mysql );

Strictness is switched on, then three scalar variables are declared:
use strict;

my ( $table_line, $code, $species );

The $table_Tine scalar holds the (soon to be constructed) tab-delimited line,
whereas the $code and $species scalars hold the extracted mnemonic protein
code and species values, respectively.

Aloop is started that continues to execute while there are lines of data arriving
from standard input:

while ( <> )

{

6 . . . . .
We could also use a use Tib statement here (as described in Getting Organised), but we
wished to show the other popular technique for including “local” modules.



242 Databases

The current line of data is assigned to the Perl’s default scalar variable, $ . Once
assigned, the line is matched against a series of patterns. The first of these
patterns looks for the ID line type:

if C/7ID CGH_G+?) /)
{

}

( $code, $species ) = ( $1, $2 );

Specifically, the pattern attempts to match against a line that starts with the
letter “I”, followed by the letter “D” and three space characters. After the space
characters, the match looks for two series of one or more characters (the “.+"
pattern), separated from each other by an underscore character, and followed by
a single-space character. If the pattern matches, the program knows it has found
an identification line type within the SWISS-PROT entry.

Note that the second series of characters near the end of the pattern is non-
greedy because of the use of the “?” qualifier. This stops the second “.+"” pattern
from attempting to match as much of the line as possible by forcing the pattern
to match as soon as possible.

The parentheses “(”’ and “)” that surround the two ‘““.+” patterns arrange for
perl to remember the matched values in the $1 and $2 scalars. These values
correspond to the mnemonic code for the protein and its associated species, and
they are used within the if block to initialise the $code and $species scalars.

The second pattern looks for the AC line type, and upon a match, the pro-
gram starts to construct the tab-delimited line. The matched accession number,
together with the code and species values, with each data value separated from
the next by a tab character, is assigned to the $tabTle_Tine scalar’:

if C /TAC (C.+7)5/ )

{
$table_line = $1 . "\t" . $code . "\t" . $species . "\t";
while ( <> )
{
last unless /"AC/;
3
}

Processing the AC line type is complicated by the fact that a SWISS-PROT entry
can have more than one AC line type. Additionally, there can be more than
one accession number on each AC line. Only the first accession number is of
interest, so the pattern non-greedily matches against the first, which is a series
of characters immediately followed by a semicolon, which is matched by the
non-greedy pattern “(.+7);”.

7
Remember that ““."” is the Perl concatenation operator.



A Database Case Study: MER 243

The second while loop within the if block (often referred to as an inner loop)
reads and discards any additional lines that match the letters “AC” at the start
of the line. In this way, any additional AC line types are ignored. Note the use of
Tast, which when invoked ensures that the inner loop ends as soon as a line that
starts with anything other than “AC” is encountered.

When it comes to extracting the last date from any DT lines, the program first
needs to find the last date line. Once found, it matches against the date part of
the line, then calls the biodb2mysql subroutine to convert the SWISS-PROT date
into a format that is acceptable to MySQL. The converted date is then added to
the $table_Tine scalar, together with a tab character:

if ( /°DT/ )
{
my $date_line = $_;

while ( <> )
{
last unless /°DT/;
$date_line = $_;
}
$date_line =~ /DT .+?) /;
$table_line = $table_line . biodb2mysql1( $1 ) . "\t";
}

Note that unlike the AC line type, in which the requirement was to extract the first
accession number from the first AC line than ignore the rest, this if block ignores
all but the last DT line. As each DT line is read, the current line is temporarily
stored in the $date_11ne scalar, then the pattern match is applied to $date_line
once there are no more DT lines to process. Again, the use of non-greedy pattern
qualifiers ensure that only the required information is matched and remembered
in the $1 scalar.

The DE line type contains the description of the protein structure. As there
can be more than one DE line type, the if block matches a pattern against the
description text, remembers the description in the $descr_1ines scalar, then
processes any remaining DE line types, concatenating the matched description to
the description already in $descr_Tines:

if ( /'DE  (.4)/ )
{

my $descr_lines = $1;

while ( <> )
{
last unless /"DE .H)/;
$descr_lines = $descr_lines . ’ ’ . §$1

}
$table_line = $table_line . $descr_lines . "\t";



244 Databases

With all the description lines determined, they are added to $table_line,
together with a tab character.

The SQ line type provides sequence header details for the SWISS-PROT entry.
The first number in this line is the sequence length, and it is extracted from the
sequence header in order to import it into the proteins table as a separate data
item. The 1if block starts by remembering the sequence header in a scalar called
$header. A second pattern match is then performed against the value in $header
to determine the first number, which is matched against the ‘“\d+” pattern:

if C(/°SQ  G.+)/)

{

my $header = $1;

$header =~ /(\d+)/;

$table_line = $table_line . $header . "\t" . $1 . "\t";
}

The sequence header (in $header) and the determined sequence length (in $1)
are then added to the $table_line scalar, separated from each other by the
required tab character.

The actual data associated with the protein structure is in the sequence data
line type, which does not have a two-letter line tag (unlike the line types ID, AC,
DT, DE and SQ). As with the DE line type, there can be more than one line of
data in the sequence. The strategy for determining the entire sequence is similar
to that used to determine the entire description. The sequence data is located
immediately before the end of the SWISS-PROT entry, which is indicated by a
double slash (//) at the start of a line on its own. The if block looks for this
pattern, and when it is found, it uses Tast to break out of the inner loop. Note
the use of the square brackets as delimiters around the “//” pattern, because the
forward-leaning slash character is the default pattern-matching delimiter:

it /7 /)
{

my $sequence_lines = $1;

while ( <> )

{
lf Cm["//1 )
last;
}
else
{
/" C.+)/;

$sequence_Tlines = $sequence_lines . $1;



12.4.6

A Database Case Study: MER 245

}

$table_line = $table_line . $sequence_lines;

}

When all the sequence data lines are in the $sequence 1lines scalar, they are
added to the $table_Tine scalar. As the sequence data is at the end of a row of
data within the proteins table, there is no need to add a tab character. Instead,
the line of data will be terminated by the newline character.

The final pattern match in get proteins checks for the end of entry double
slash. When it is found, the i f block prints out the value of $tab1e_11ine with the
required newline. Once printed, the value of $table_line is reset to the empty
string, in preparation for processing the next SWISS-PROT entry (if there is one):

it (ml™//1)

{
print "$table_Tine\n";
$table_line = ’’;

}

When provided with the names of a collection of data files containing one or more
SWISS-PROT entries, the get_proteins program converts all the entries in each
of the data files into individual tab-delimited lines of data, one line per entry.
The line of data is then printed to standard output. Assume that a collection of
SWISS-PROT data files are named as follows:

acica_ADPT.swp.txt
serma_abdprt.swp.txt
shilf_seq_ACDP.swp.txt

The following invocation of the get_proteins program takes these files, performs
the conversion on each entry and then writes the output to a data file called
proteins.input:

./get_proteins *swp* > proteins.input

The “>” character on the command-line redirects the output away from standard
output and towards the named file.

Importing tab-delimited data into proteins

There now exists a collection of tab-delimited rows of data in proteins.input.
Importing this data into the proteins table is straightforward:

mysql -u bbp -p MER
mysql> Toad data Tocal infile "proteins.input" into table proteins;

Query OK, 14 rows affected (0.07sec)
Records: 14 Deleted: 0, Skipped: 0, Warnings: 0



12.4.7

246 Databases

After logging-in to the MER database as the “bbp” user, a LOAD DATA query is
issued to import the data in the file proteins.input into the proteins table.
MySQL responds by stating that the query was OK, and indicates that 14 records
were affected. 14 rows of data have been successfully added to the proteins
table. Of note is the fact that the addition of the 14 rows of data took all of 0.07
seconds.

Working with the data in proteins

The SQL DML query, SELECT, allows data in a table to be displayed®. The basic
form of the SELECT query involves specifying the names of the columns to
display, together with the table name. Here is a SELECT query that displays the
accession_number and sequence_length values for all the rows in the proteins
table:

mysql> select accession_number, sequence_length
-> from proteins;

oo R e E e +

| accession_number | sequence_length |

I
o - +
| Q52109 | 561 |
| Q52110 | 121 |
| Q52107 | 91 |
| Q52106 | 116 |
| P08662 | 460 |
| P08664 | 212 |
| P08654 | 121 |
| P13113 | 91 |
| P13111 | 144 |
| P13112 | 116 |
| P08332 | 564 |
| P04337 | 60 |
| P20102 | 120 |
| P04129 | 91 |
o o +

14 rows 1in set (0.06 sec)

The SELECT query extracts the columns from the proteins table and displays
the data in the form of a table. As expected, this new (temporary) table has two
columns and 14 rows of data. The word FROM has special meaning when used
with SELECT: it identifies the table against which to execute the query.

Note how this query is entered into the MySQL Monitor over two lines. If,
when entering a query, the Enter key is pressed, the MySQL Monitor prompts
for an additional line of input with the “->” symbol. Remember, the query is

8 . . .
It may be helpful to refer to the description of the proteins table on page 237 while working
through this section.



A Database Case Study: MER 247

not executed until the required semicolon is encountered. In this query, the
semicolon appears at the end of the second line. The MySQL Monitor treats the
two lines as one single query.

SELECT queries can be qualified in a number of ways®. The ORDER BY qualifier
sorts the results on the basis of a column name. In this next query, the results
from the query are sorted by accession_number:

mysql> select accession_number, sequence_length
-> from proteins
-> order by accession_number;

Rl et DLl Fommmm - +

| accession_number | sequence_length |

|
o - +
| P04129 | 91 |
| P04337 | 60 |
| P08332 | 564 |
| P08654 | 121 |
| P08662 | 460 |
| P08664 | 212 |
| P13111 | 144 |
| P13112 | 116 |
| P13113 | 91 |
| P20102 | 120 |
| Q52106 | 116 |
| Q52107 | 91 |
| Q52109 | 561 |
| Q52110 | 121 |
o o +

14 rows in set (0.01 sec)

A further qualifier, WHERE, filters the results from the query on the basis of a
condition. In this next example query, only those results in which the length of
the sequence is greater than 200 are displayed:

mysql> select accession_number, sequence_length
-> from proteins
-> where sequence_length > 200
-> order by sequence_length;

et E P e e L P +
| accession_number | sequence_length |
LT LR TR oo +
| PO8664 | 212 |
| P08662 | 460 |
| Q52109 | 561 |
| P08332 | 564 |
oo e e PP L e +

4 rows 1in set (0.04 sec)

9Refer to the MySQL Manual for the full list of qualifiers.



12.4.8

248 Databases

And with this query, Question 1 from page 231 is answered: How many protein
structures in the database are longer than 200 amino acids in length?. The answer
is 4. Note that the results from this query are sorted by sequence_length, as
opposed to accession_number (as they were with the last query).

Adding another table to the MER database

More data is required to answer the rest of the questions on page 231. Another
table needs to be created in the MER database to accommodate this additional
data. Specifically, this table holds DNA sequences extracted from a series of EMBL
entries.

The create_dnas.sql text file contains a CREATE TABLE query that defines
the structure for a new table, called dnas:

create table dnas

(
accession_number varchar (8) not null,
entry_name varchar (9) not null,
sequence_version varchar (16) not null,
last_date date not null,
description text not null,
sequence_header varchar (75) not null,
sequence_length 1int not null,
sequence_data text not null

)

This table structure is not unlike that for the proteins table (on page 237).
However, it is different. The accession_.number in the dnas table can be 8
characters long, whereas the similarly named column in proteins is restricted
to a maximum of 6 characters. Also, the second and third columns in this table
hold data on the EMBL entries name and the version number, respectively. Recall
that columns 2 and 3 in the proteins table hold data on the mnemonic code and
species for a protein structure.

As with the creation of the proteins table, the create_dnas.sql text file can
be fed to the MySQL Monitor to create the dnas table. The MySQL Monitor is then
used to issue a SHOW TABLES and DESCRIBE query to confirm that the dnas table
exists within the MER database, as follows:

mysql -u bbp -p MER < <create_dnas.sql
mysql -u bbp -p MER

mysql> show tables;



A Database Case Study: MER 249

| proteins |
2 rows in set (0.00 sec)

mysql> describe dnas;

e pommm - +--—- - e ittt o +
| Field | Type | Null | Key | Default | Extra |
Fomm - o - - - o - +
| accession_number | varchar(8) | | | | |
| entry_name | varchar(9) | | | | |
| sequence_version | varchar(16) | | | | |
| Tast_date | date | | | 0000-00-00 | |
| description | text | | | | |
| sequence_header | varchar(75) | | | | |
| sequence_length | int(11l) | | | O | |
| sequence_data | text | | | | |
o o mm e it  iniaiat e it  Emiaiaiabt +

8 rows 1in set (0.00 sec)

12.4.9 Preparing EMBL data for importation

The strategy for populating the dnas table with data is very similar to that used
with proteins. A program called get_dnas (which is based on get_proteins)
processes any number of EMBL entries and converts each entry into an appropri-
ately formatted tab-delimited line of data. Here is the get dnas program:

#! /usr/bin/perl -w

# get_dnas - given a Tist of EMBL files, extract data

# from them in preparation for importation into a database system.
#

# Note that the results produced are TAB-delimited.

BEGIN {
push @INC, "$ENV{’HOME’}/bbp/";

}
use UsefulUtils gw( biodb2mysql );

use strict;
my ( $table_line, $name );

while ( <> )

{
if C /7ID .+?) /)
{

$name = $1;

}
if C /TAC (C.+7)3/ )
{



250 Databases

$table_line = $1 . "\t" . $name . "\t";

while ( <> )

{
last unless /"AC/;
}
}
if C /°SV .+)/ )
{
$table_line = $table_line . $1 . "\t";
}
if ( /°DT/ )
{
my $date_Tline = $_;
while ( <> )
{
Tast unless /°DT/;
$date_line = $_;
3
$date_line =~ /°DT  (.+?) /;
$table_line = $table_line . biodb2mysql( $1 ) . "\t";
}
if ( /°DE .+)/ )
{
my $descr_lines = $1;
while ( <> )
{
Tast unless /°DE  (.+)/;
$descr_lines = $descr_lines . ’ ’ . $1
3
$table_line = $table_1ine . $descr_lines . "\t";
}

if (/°SQ  (C.+)/)

{
my S$header = $1;
$header =~ /(\d+)/;

$table_line = $table_line . $header . "\t" . $1 . "\t";
}
if (/7 C+2D\s+\d+/ )
{

my $sequence_lines = $1;
while ( <> )

it (ml™//1)
{

last;



A Database Case Study: MER 251

}
else
{
/" C+2)\s+\d+$/;
$sequence_lines = $sequence_lines . ’ ’ . $1;
}

}

$table_line = $table_line . $sequence_lines;

}

it (ml™//1)

{
print "$table_Tine\n";
$table_line = ’’;

}

Rather than describe the workings of this program in detail (it is very similar to
get_proteins, after all), let’s examine the differences between this program and
the get_proteins program.

The ID line in the EMBL entry is easy to process because there is no mnemonic
code nor species sub-parts to extract, as there was with the SWISS-PROT entry.
The identification of the EMBL entry is non-greedily matched against the line and
assigned to the $name scalar:

if ¢ /7ID (.47 /)
{

3

$name = $1;

Note that the value of $name is added to the tab-delimited line during the
processing of the AC line type.

The SV line is not found within SWISS-PROT entries, so the get dnas program
adds a pattern match to first find, and then extract, the EMBL sequence version
and add it to the tab-delimited line of data:

if C/°SsV G4/ )
{

3

$table_line = $table_line . $1 . "\t";

Refer back to the sample EMBL entry on page 229, and note the format of the
sequence data. Unlike the sequence data within a SWISS-PROT entry, each line of
EMBL sequence data ends with a number. These numbers indicate the number of
the last base in each line of sequence data, and are included to allow readers to
quickly locate a particular region of interest. There is no requirement to include
these numbers in the dnas table, so the pattern match used within the if block
ensures that the numbers are not concatenated with the list of bases:



252 Databases

if (/7 C+2D\s+\d+/ )
{
my $sequence_lines = $1;
while ( < )
{
if (m["//1)
{
last;
}
else
{
/" C+2)\s+\d+$/;
$sequence_lines = $sequence_lines . * ’ . $1;
}
b

$table_line = $table_line . $sequence_Tlines;

The pattern used to extract these bases are:

/" C+D\s+\d+/

This matches five space characters at the start of a line, “"”, followed by a
collection of one or more characters, “.+?”, followed by one or more space
characters, ‘“\s+”, followed by one or more digits, “\d+”, positioned at the end of
aline, “$”. The collection of characters is remembered in the $1 scalar, then used
to construct the line of sequence data. When all the lines that contain sequence
data are exhausted, the list of bases is added to the tab-delimited line.

The rest of get_dnas is as per the description of the get_proteins program.
Let’s assume a small series of EMBL entries is contained in a collection of data
files with the following names:

AF213017.EMBL. txt
J01730.emb1.txt
M15049.embT.txt
M24940.emb1.txt

The following invocation of the get_dnas program takes these files, performs
the conversion on each entry, and then writes any output to a data file called
dnas.input:

./get_dnas *EMBL* *emb1* > dnas.input

Remember that the “>” character on the command-line redirects the output away
from standard output and towards the named file.



A Database Case Study: MER 253

12.4.10 Importing tab-delimited data into dnas

12.4.11

There now exists a collection of tab-delimited rows of data in dnas.input.
Importing this data into the dnas table is accomplished by logging-in to the MER
database (using MySQL Monitor), and issuing the following LOAD DATA query:

mysql> Toad data Tocal infile "dnas.input" into table dnas;

Query OK, 4 rows affected (0.01lsec)
Records: 4 Deleted: 0, Skipped: 0, Warnings: 0

MySQL responds by stating that the query is OK, and indicates that 4 rows of
data were added to the dnas table.

Working with the data in dnas

Answering Question 2 from page 231 is easy, as the SQL DML query is based on
the query used to answer Question 1 from the last section. Here’s the SELECT
query and the results returned from MySQL.:

mysql> select accession_number, sequence_length
-> from dnas
-> where sequence_length > 4000
-> order by sequence_length;

o o - +
| accession_number | sequence_length |
o o +
| 301730 | 5747 |
| AF213017 | 6838 |
o o - +

2 rows in set (0.00 sec)

Which answers the question: How many DNA sequences in the database are longer
than 4000 bases in length?

Answering Question 3, What's the largest DNA sequence in the database?, is
complicated by the fact that MySQL, version 3, does not yet support a technology
called sub-select. This is the ability of SQL to take the results of one SELECT query
and use them as part of another. For instance, this SELECT query returns the
largest sequence_Tength value from the dnas table:

select max( sequence_length ) from dnas;

It would be convenient to embed the result from this query into another SELECT
query, and then extract a list of columns, like this:

select accession_number, entry_name, sequence_length
from dnas
where sequence_length = ( select max( sequence_length ) from dnas );



12.4.12

254 Databases

That is, the sub-select determines the largest sequence_length value, which is
then used to extract the accession_number, entry_name and sequence_length
columns from the dnas table for the row that contains a value equal to the
maximum. This would be nice, if only MySQL supported this feature!.

Other than using another database system, this MySQL limitation can be
worked around using a number of techniques. One is to simply order the results
by sequence length, and arrange to display the list in descending order. That
way, the row (or rows) with the largest sequence_Tength appear at the top of
the results. Here, again, is the query that answered Question 2, this time with
the ORDER BY clause qualified by the word DESC, which orders the results in
descending order:

mysql> select accession_number, sequence_length
-> from dnas
-> where sequence_Tlength > 4000
-> order by sequence_length desc;

e Rl ittt L Ll +
| accession_number | sequence_length |
i Fomm e +
| AF213017 | 6838 |
| 301730 | 5747 |
fommmmm - Rl ittt L L Ll +

2 rows in set (0.00 sec)

Another technique is to arrange to display only a single row from the results. The
LIMIT query qualifier does just this:

mysql> select accession_number, entry_name, sequence_length
-> from dnas
-> order by sequence_length desc
-> Timit 1;

Fommm - R e et Fommmm e +
| accession_number | entry_name | sequence_length |
e Fmmmmm fommmmm - +
| AF213017 | AF213017 | 6838 |
i Fommm fommmm - +

1 row in set (0.01 sec)

And there it is, the answer to Question 3: What's the largest DNA sequence in the
database?

Relating data in one table to that in another

The real power of a database system comes from its ability to relate the data in
one table to that in another. As they stand, the proteins and dnas tables are

10 . . . . . . .
Version 4.1 of MySQL is under active development as this book is being written. Current
plans call for the inclusion of sub-select.



12.4.13

A Database Case Study: MER 255

independent of one another. Although the table structures are similar in that, for
instance, they both contain a column called accession_number, this alone does
not allow the tables to be related to each other. The AC values in proteins are
unique to the SWISS-PROT database, just as those in dnas are unique to the EMBL
database.

Both the SWISS-PROT and EMBL entries contain an optional DR line type, which
contains a list of database cross references for the entry. Here are the DR lines
from the sample SWISS-PROT entry (page 228):

DR EMBL; AF213017; AAA19679.1; -.
DR InterPro; IPR003457; Transprt_MerT.
DR Pfam; PF02411; MerT; 1.

Note the EMBL line, which cross-references this SWISS-PROT entry to an identified
EMBL entry. It is this information that can be used to relate the data in the
proteins table to that in dnas. Here are the DR lines from the sample EMBL entry
(page 229):

DR  GOA; P08662; P08662.
DR  GOA; P13111; P13111.
DR  GOA; P13112; P13112.
DR  GOA; P13113; P13113.
DR SWISS-PROT; P08662; MERA_SERMA.
DR SWISS-PROT; P13111; MERR_SERMA.
DR SWISS-PROT; P13112; MERT_SERMA.
DR SWISS-PROT; P13113; MERP_SERMA.

Again, notice that there are DR lines that cross-reference this EMBL entry to a
small collection of SWISS-PROT entries. It is this information that can be used to
relate the data in the dnas table to that in proteins.

Adding the crossrefs table to the MER database

The create_crossrefs.sql text file contains a CREATE TABLE query that defines
the structure for a new table, called crossrefs:

create table crossrefs (
ac_protein varchar (6) not null,
ac_dna varchar (8) not null

The crossrefs table contains two columns. The first, ac_protein, holds the
accession number extracted from a SWISS-PROT entry, while the second, ac_dna,
holds the accession number extracted from an EMBL entry. This table is added to
the MER database with the now familiar commands:



12.4.14

256 Databases
mysql -u bbp -p MER < create_crossrefs.sql
mysql -u bbp -p MER

mysql> show tables;

o +
| Tables_in_MER

o +
| crossrefs |
| dnas |
| proteins |
o +

3 rows in set (0.00 sec)

mysql> describe crossrefs;

Fmmmmmm - e +--—-—- +-—--- LT - —- +
| Field | Type | Null | Key | Default | Extra |
Fomm oo LT +--—-—- +----- e T et +
| ac_protein | varchar(6) | | | | |
| ac_dna | varchar(8) | | | | |
Fmmmmmm - e +--—-—- +-—--- LT - —- +

2 rows in set (0.00 sec)

The create_crossrefs.sql text file is fed to the MySQL Monitor, then the
database is logged into by the “bbp” user. The SHOW TABLES query confirms that
the database now contains three tables, and a DESCRIBE query issued against the
crossrefs table provides details on the structure of crossrefs.

Preparing cross references for importation

The strategy for determining cross-reference data from both the SWISS-PROT
and EMBL entries is the same. Each entry is processed one line at a time in
order to determine the AC line type. When this is found, the accession number
is remembered in a scalar variable container called $ac. A pattern then matches
against the DR line type.

For SWISS-PROT entries that cross-reference the EMBL database, the DR line
begins with “DR EMBL ; ”, followed by the accession number of the cross-referenced
EMBL entry. If a match is found on this pattern, the current SWISS-PROT accession
number (stored in $ac), a tab character and the EMBL accession number (stored in
$1) are printed to standard output.

Here is a small program, called get_protein_crossrefs, that implements this
algorithm for any collection of SWISS-PROT entries:

#! /usr/bin/perl -w

# get_protein_crossrefs - given a list of SWISS-PROT files, extract
# data in preparation for importation into a database system.
# The AC number is extracted, together with any EMBL AC’s.



A Database Case Study: MER 257

#
# Note that the results produced are TAB-delimited.

use strict;

my ( $ac );
while ( <> )
{ if C /TAC CG+7)5/ )
k $ac = $1;
while ( <> )
! last unless /"AC/;
) }
if ( /DR EMBL; (.+?); /)
k print "$ac\t$1\n";
) }

Similarly, for EMBL entries that cross-reference the SWISS-PROT database, the
DR line begins with “DR SWISS-PROT;”, followed by the accession number of
the cross-referenced SWISS-PROT entry. If a match is found on this pattern, the
current SWISS-PROT accession number (stored in $1), a tab character and the
EMBL accession number (stored in $ac) are printed to standard output.

Here is a program, called get_dna_crossrefs, that implements this algorithm
for any collection of EMBL entries:

#! /usr/bin/perl -w

# get_dna_crossrefs - given a 1list of EMBL files, extract data

# from them in preparation for importation into a database system.
# The AC number is extracted, together with any SWISS-PROT AC’s.

#

# Note that the results produced are TAB-delimited.

use strict;
my ( $ac );
while ( <> )
if ( /TAC (4757 )

{
$ac = $1;



258 Databases

while ( <> )

{
last unless /"AC/;

3
}
if ( /°DR SWISS-PROT; (.+7); /)
{

print "$1\t$ac\n";
}

Note that both programs produce a list of cross references, one cross reference
per line, in SWISS-PROT, EMBL order.

The following invocations of both programs produce two cross-referenced lists
from the same collection of SWISS-PROT and EMBL entries used earlier in this
chapter:

./get_protein_crossrefs *swp* > protein_crossrefs
./get_dna_crossrefs *emb1* *EMBL* > dna_crossrefs

Two lists of cross references now exist. It is possible to load each of these
lists into the crossrefs table. However, as there is a high likelihood that the
combination of the two lists will result in some duplicate cross references, it is
prudent to remove the duplicates before loading the data into the database.

Another small program, called unique_crossrefs, does just this. Using a very
popular Perl programming idiom, it reads any number of cross references and
inserts them into a hash called %unique. The name part of %unique is set to
the cross-reference value, while the value part is set to 42 (for want of a better
valuell). The unique_crossrefs program ignores the value part of the hash, and
takes advantage of the fact that the name parts must be unique:

#! /usr/bin/perl -w

# unique_crossrefs - read the cross reference files produced by

# get_dna_crossrefs and get_protein_crossrefs and produce a unique
# Tist by removing duplicates.

use strict;

my %unique;

while ( <> )

{

chomp;
$unique{ $_ } = 42;

11 ) .
It does not really matter which value we set the value part to, as the value is never used.
However, the use of 42 on this occasion may have something to do with Douglas Adams.



12.4.15

12.4.16

A Database Case Study: MER 259

}
foreach my $crossref ( keys %unique )
{
print "$crossref\n";
}

The cross references are read one line at a time and added to the hash. Note
the use of chomp to remove the newline character from the end of each line
of input. Once the list of cross references is exhausted, a foreach statement
extracts the name parts from the %unique hash using keys, then prints them
to standard output (one at a time). The following command-line takes the
data files produced by protein_crossrefs and dna_.crossrefs and runs the
unique_crossrefs program against them. The results are written to a new data
file, called unique.input:

./unique_crossrefs protein_crossrefs dna_crossrefs > unique.input

Importing tab-delimited data into crossrefs

Importing the unique.input data into the crossrefs table is accomplished by
logging-in to the MER database (using MySQL Monitor), and issuing the following
LOAD DATA query:

mysql> Toad data Tocal infile "unique.input" into table crossrefs;
Query OK, 22 rows affected (0.04 sec)
Records: 22 Deleted: 0 Skipped: 0 Warnings: 0

A total of 22 distinct cross references now exist in the database.

Working with the data in crossrefs

A quick way to view all the data in a table is to use the wildcard version of
the SELECT query. Use this SELECT query to view every row and column in the
crossrefs table:

mysql> select * from crossrefs;

ittt Fmmm—— +
| ac_protein | ac_dna |
Fommm - Fommm - +
| P04336 | 101730 |
| P08332 | J01730 |
| P08654 | M15049 |
| P20102 | X03405 |
| Q52107 | AF213017 |
| P03827 | 101730 |
| P13113 | M24940 |
| P04129 | 101730 |



260 Databases

| P13112 | M24940 |
| P04337 | 701730 |
| P04129 | K03089 |
| P08662 | M24940 |
| P08662 | M15049 |
| P13111 | M24940 |
| P08332 | K03089 |
| P20102 | L29404 |
| P03830 | 701730 |
| Q52109 | AF213017 |
| P20102 | 101730 |
| Q52106 | AF213017 |
| P04337 | K03089 |
| P08664 | M15049 |
o Fommm - +

22 rows 1in set (0.02 sec)

The crossrefs table provides the needed link to relate the proteins table
to dnas. Specifically, the SWISS-PROT accession number stored in the pro-
teins table can be related to the SWISS-PROT accession number in cross-
refs. The EMBL accession number cross-referenced with the same SWISS-PROT
accession number in crossrefs can be used to relate the EMBL accession
number in crossrefs with the EMBL accession number stored in the dnas
table.

Here’s a SELECT query to extract data from the proteins and dnas tables on
the basis of the existence of a cross reference:

mysql> select proteins.sequence_header, dnas.sequence_header
-> from proteins, dnas, crossrefs
-> where proteins.accession_number = crossrefs.ac_protein
-> and dnas.accession_number = crossrefs.ac_dna
-> order by proteins.sequence_header;

The sequence_header columns from both tables are explicitly identified by pre-
fixing each column name with its associated table name. Unlike the SELECT
queries from earlier, this query extracts its data from three tables: proteins,
dnas and crossrefs, and these tables are identified as part of the FROM
clause.

The WHERE qualifier relates the data in all three tables to each other. If the
SWISS-PROT accession number in crossrefs is identical to the SWISS-PROT
accession number in proteins, in addition to the EMBL accession number in the
same row in crossrefs being identical to that in dnas, a link can be established
between the protein structure and the DNA sequence.

The ORDER BY qualifier arranges to display the results sorted by SWISS-PROT
sequence header. The results from this query are shown in Figure 12.1 on
page 261.



261

MER

A Database Case Study.

"S9[(R] SBUp PUR SULD30Jd ) WOIJ SIIPRIY JUINDIS PIIUIRII-SSOID Y] T[°ZT 21N

_

_
_

fdayzo Q f1 0S9T !9

"Lwr_u.o 4] "._. 09
fdayio @ 1 960T !9
fdayzo @ 'l 960T !
fJaylo ¢ 1 960T D

tdByl0 0 ‘1 0S9T ‘9
fdayro 0 L $09
T4BYI0 0 1L THb
fdaylo 0 L TH¥
“dayro 0 f1 09
‘dsylo 0 'L TE¥

fJayio 0 'l 960T !9
TJsYro 0 Tl 09
fJayio 0 'l 0S9T !9

06T ‘D 8S8T ‘V ObST
‘D 0z8 D 788 ‘V L19

TZ/T ') SILT 'Y SOTT
TZLT D SLLT 'V SOTT
TZLT fD SZLT fV SOTT
06T D 8S8T 'V ObST

D 028 ‘D 288 ‘v /19
‘D 089 D T¥9 'V 1€
D 089 {2 TH9 ‘v T6€
D 0Z8 D 788 -V LT9
‘D 089 D T9 'V I6E
TZLT D S4LT 'V SOTT
‘D 028 D 788 'V I19
06/T ‘D 8S8T 'V OVST

'dg 8£99 9ousnbag
‘dg9 £767 @dousnbag
tdg /7S 9ousnbag
‘d9 /y/§ ®dusanbag
‘d9 ZvZS 9oduanbag
‘dg9 8£89 @ouanbag
‘d9 £Z6Z ®duanbag
‘dg9 £5TZ 92uanbog
‘d9 €STZ ®dusnbsag
‘dd £z67 9ousnbog
‘dg9 £5T7Z @ouanbag
‘d9 /¥/S ®duanbass
‘dg9 £z67 @ouanbag
‘dd 8£89 ®duanbass

*$9D¥D 39450£5I699TZEVS
‘$9D¥D 6905626362,0093TC
*$9DUD SYTEOEZEDVERTZZS
‘$90¥D S¥AQ06Q¥IS9T0S99
924D 4388vQ9ceEr/328S
#9240 94/STIZ0LVZOITTIT
#9242 S04£5994€£4399+8¢29
7924 S04€594€4399¥8¢79
#9242 ¢30S6TTI0F99359T
?92¥D 25026849¥22549490
#9240 €0T¥4T30A0892044S
¥92¥D dvd93I8ETHFVI9TLSEAT
#9224 36/VIZ3F0ZIETIEY
#9242 40T938840¢6V0E6C

MW
MW
M
H
MW
MW
MW
M
MW

(089S 87°0) 319S UL SMOJ HT

2689
849589
£898%
/858
8/0¢£¢
£€09T
¥S6ZT
€241
T1SZT
0TS<T

Vv 16
vV 16
Vv 16
Vv 09
YV $9§
VvY 19§
vv 09%
vv¥ 09%
YW ¢1¢
YW vl
v IcT
vV 0<T
vv 911
vV 91T

‘MW 9£96
‘MW 8YS6
U andd
‘MW 95¥9

3ONIND3AS
JONINDIS
3ONIND3AS
JONIND3S
JFONINDIS
JONINDIS
JIONIND3S
JONIND3S
JONIND3S
JFONINDIS
JONINDIS
JIONIND3S
JONINDIS
JIONIND3S




262

Databases

A variation on the last SELECT query may produce more meaningful results.
This query extracts the code and species values from the proteins table,
together with any associated DNA entry_name for all cross references:

|
|
|
|
|
|
|
|
|
|
|
|
|
|
+

select proteins.code, proteins.species, dnas.entry_name
from proteins, dnas, crossrefs

where proteins.accession_number = crossrefs.ac_protein
and dnas.accession_number = crossrefs.ac_dna;
R e e T e e +

| species | entry_name |

R e e T e e +

| SHIFL | EC4 |

| SERMA | PPMER |

| ACICA | AF213017 |

| SERMA | PPMERR |

| SHIFL | EC4 |

| SERMA | PPMERR |

| SHIFL | EC4 |

| SERMA | PPMERR |

| SERMA | PPMER |

| SERMA | PPMERR |

| ACICA | AF213017 |

| SHIFL | EC4 |

| ACICA | AF213017 |

| SERMA | PPMER |

R e T Fomm - +

14 rows 1in set (0.05 sec)

The presentation of these results can be improved. Specifically, sorting the results
by SWISS-PROT mnemonic code improves readability. Also, the ability to provide
more descriptive names for each column of results also helps. Here’s a variation
on the last query that implements both improvements:

mysql>

select
proteins.code as ’Protein Code’,
proteins.species as ’Protein Species’,

-> dnas.entry_name as ’'DNA Entry Name’

-> from proteins, dnas, crossrefs

-> where proteins.accession_number = crossrefs.ac_protein

-> and dnas.accession_number = crossrefs.ac_dna

-> order by proteins.code;
o e E L L fmm +
| Protein Code | Protein Species | DNA Entry Name |
o e E L L fmm +
| MERA | SERMA | PPMERR |
| MERA | SERMA | PPMER |
| MERA | ACICA | AF213017 |
| MERA | SHIFL | EC4 |
| MERB | SERMA | PPMER |
| MERC | SHIFL | EC4 |



12.4.17

A Database Case Study: MER 263

| MERD | SERMA | PPMER |
| MERD | SHIFL | EC4 |
| MERP | ACICA | AF213017 |
| MERP | SERMA | PPMERR |
| MERP | SHIFL | EC4 |
| MERR | SERMA | PPMERR |
| MERT | ACICA | AF213017 |
| MERT | SERMA | PPMERR |
o o o +

14 rows 1in set (0.08 sec)

The use of the “as’ keyword allows for the renaming of each column in the results
table, and an appropriate ORDER BY qualifier sorts the results by SWISS-PROT
mnemonic code. And with that query, Question 4 is answered: Which protein
structures are cross-referenced with which DNA sequences?

Adding the citations table to the MER database

To answer Question 5, Which literature citations reference the results from the
previous question? (that is, Question 4), more data is required than currently
exists in the MER database. A new table, called citations, stores data on the
citation information extracted from a collection of SWISS-PROT and EMBL entries.
Here is the content of the create_citations.sql text file:

create table citations (
accession_number varchar (8) not null,

number int not null,
author text not null,
title text not null,
Jocation text not null,
annotation text

The citations table is populated with data from any reference lines that exist
in either type of entry. These are easily identified: simply look for a series of
lines that start with the RN line type. Let’s refer to this series of lines as a
reference record. Here is the reference record from the sample SWISS-PROT entry
on page 228:

RN [1]

RP SEQUENCE FROM N.A.

RX  MEDLINE=94134837; PubMed=8302940;

RA Kholodii G.Y., Lomovskaya 0.L., Gorlenko Z.M., Mindlin S.Z.,

RA  Yurieva 0.V., Nikiforov V.G.;

RT  "Molecular characterization of an aberrant mercury resistance

RT  transposable element from an environmental Acinetobacter strain.";
RL  Plasmid 30:303-308(1993).



264 Databases

And here is the reference record from the sample EMBL entry on page 229:

RN [1]

RP  1-2923

RX ~ MEDLINE; 89327136.

RA Nucifora G., Chu L., Silver S., Misra T.K.;

RT "Mercury operon regulation by the merR gene of the organomercurial
RT resistance system of plasmid pDU1358";

RL  J. Bacteriol. 171(8):4241-4247(1989).

XX

Notice how both reference records are similar in that each has the same sequence
of line types, presented in the following order: RN, RP, RX, RA, RT and RL. However,
not all of these line types are required within the reference record and, to make
matters slightly more complicated, the SWISS-PROT manual identifies a different
set of mandatory and optional line types for its reference records than does the
EMBL manual.

The citations table, as defined above, provides columns to hold the refer-
ence number (RN), author (RA), title (RT) and location (RL). The other columns
store an accession number (extracted from the AC line type) and an optional
annotation.

The usual sequence of commands is used to create the citations table, check
to see that the table has been added to the database (using SHOW TABLES) and
display the structure of the newly created table (using DESCRIBE):

mysql -u bbp -p MER < create_citations.sql
mysql -u bbp -p MER

mysql> show tables;

o - +
| Tables_in_MER |
o m e +
| citations |
| crossrefs |
| dnas |
| proteins |
o m e +

4 rows in set (0.00 sec)

mysql> describe citations;

e e L P L L LT - o= oo mm - Fmmm———— +
| Field | Type | Null | Key | Default | Extra |
i et T e +--—--- +---—- - +-m— - +
| accession_number | varchar(8) | | | | |
| number | int(11) | | | O | |
| author | text | | | |
| title | text | | | |
| Tocation | text | | | |



A Database Case Study: MER 265

6 rows in set (0.00 sec)

Note that the annotation column accepts NULL values, as it is defined as
optional.

12.4.18 Preparing citation information for importation

The get_citations program processes any collection of SWISS-PROT and EMBL
entries, extracting any found reference records. Both types of entry can contain
zero, one or more reference records, and the get_citations program needs to
accommodate this. Additionally, the RT line type, which contains the reference
title, is - somewhat surprisingly - optional within SWISS-PROT entries, but not
within an EMBL entry. This also has to be taken into consideration. Here’s the
entire get_citations program:

#! /usr/bin/perl -w

# get_citations - given a 1list of SWISS-PROT and EMBL files, extract
# data in preparation for importation into a database system.

# Specifically, extract the RN citation information from the files.
#

# Note that the results produced are TAB-delimited.

use strict;

my ( $table_line, $ac, $title_lines );

while ( <> )
{ if ( /TAC 475/ )
{ $ac = $1;
while ( <> )
{ last unless /"AC/;
) 3
j'{f C /°RN NLQ\d\1/ D

print "$table_Tine\t\n" if defined $table_Tline;
$table_line = $ac . "\t" . $1 . "\t";
while ( <> )

{
if ( /7RA (.+)/ )



266

Databases

}

my $author_lines = $1;

while ( <> )
{
last unless /"RA (.+)/;
$author_lines = $author_lines . ’ ’ . $1

}
$table_line = $table_1line . $author_lines . "\t";

if C( /'RT  (.4)/ )
{

}

$title_lines = $1;

while ( <> )
{
Tast unless /°RT C.+)/;
$title_lines = $title_lines . * ’° . $1
3
$table_line = $table_line . $title_lines . "\t";

if ¢ /'RL (C.4)/ )

{

my $location_lines = $1;

if ( !'defined( $title_lines ) )
{

}

$title_lines = undef;

$table_line = $table_line . ’(no title)’ . "\t";

while ( <> )
{
Tast unless /"RL (.v)/;
$location_Tlines = $location_Tlines . * ’ . $1
b

$table_line = $table_line . $location_Tines;

it (/RN N[QA\d+\1/ D

{
print "$table_Tline\t\n" if defined $table_line;
$table_line = $ac . "\t" . $1 . "\t";
redo;
}
else
{
last;
}



A Database Case Study: MER 267

}
}
print "$table_Tline\t\n" if defined $table_line;

The accession number is extracted from the AC line type in the usual way, and
stored in the $ac scalar. A pattern match then looks for “RN” at the start of a line.
If this is not found, the entry has no reference records and the get citations
program ends, producing no results. This explains the use of the if defined
statement qualifier appended to each of the print statements. That is, if there’s
no $table_Tine to print, don’t print it.

If the pattern is found, the program processes the reference record. Recall that
more than one reference record can exist in either entry. With SWISS-PROT entries,
the first, second (and subsequent) reference records are positioned immediately
after each other in the entry. With EMBL entries, the first, second (and subsequent)
reference records are separated from each other by a XX line type. This helps
explain the inclusion of a pattern match for “RN” at the start of the line within
the inner loop, as follows:

if C /RN \[Q\dH\1/ D

{
print "$table_Tline\t\n" if defined $table_line;
$table_Tline = $ac . "\t" . $1 . "\t";
redo;
}
else
{
last;
}

If another RN line type is encountered within the inner loop (that is, while already
processing a reference record), it is highly likely that a SWISS-PROT entry is
being processed. The if block prints the current $table_line, starts another
$table_Tine and then invokes Perl’s redo subroutine. This causes the current
(inner) loop to restart without re-evaluating the loop condition. As the program
has determined that a new reference record is starting, and as the program has
already read the first line of the record (the RN line type), this is the most sensible
thing to do at this stage.

If, having reached the end of a reference record and having read a line that
starts with something other than “RN”, the program can assume that it is reading
an EMBL entry or that it has reached the end of the reference records in the SWISS-
PROT file. Either way, the invocation of Tast within the else block ensures that
the inner loop ends.



12.4.19

12.4.20

268 Databases

The following command-line executes the get_citations program against all
the files in the current directory!?. The results are written to a new data file,
called citations.input:

./get_citations * > citations.input

Importing tab-delimited data into citations

Importing citations.input into the crossrefs table is accomplished by
logging-in to the MER database (using MySQL Monitor), and issuing the following
LOAD DATA query:

mysql> Toad data local infile "citations.input" into table citations;
Query OK, 34 rows affected (0.08 sec)
Records: 34 Deleted: 0 Skipped: 0 Warnings: 0

Thirty-four citations are now stored in the table.

Working with the data in citations

Itis possible to exploit the fact that the citations table includes a column of data
that contains a mix of SWISS-PROT and EMBL accession numbers. Specifically, the
accession_number column in citations can be related to the similarly named
column in both proteins and dnas, as well as the ac_protein and ac._dna
columns in crossrefs.

Here is a SELECT query that answers Question 5, Which literature citations
reference the results from the previous question?:

mysql> select
-> proteins.code as ’Protein Code’,
-> proteins.species as ’Protein Species’,
-> dnas.entry_name as ’'DNA Entry Name’,
-> citations.location as ’Citation Location’
-> from proteins, dnas, crossrefs, citations
-> where proteins.accession_number = crossrefs.ac_protein
-> and dnas.accession_number = crossrefs.ac_dna
-> and dnas.accession_number = citations.accession_number
-> order by proteins.code;

This query is the longest in this chapter. Despite this, it is not too difficult to
understand. In essence, it is the same query that answered Question 4, with the
main difference being that the accession_number column in the dnas table is

12
The assumption is that the current directory contains the collection of SWISS-PROT and
EMBL data files.



A Database Case Study: MER 269

also related to the accession_number column in the citations table. The FROM
clause includes the citations table in its list, and the location column of
data (from citations) is included in the results for this query as the “Citation
Location” column.

The abridged results from this query are shown in Figure 12.2 on page 270.

Where to from Here

A lot of ground has been covered in this chapter. Despite this, there is much
more to databases - this chapter is merely an introduction. No consideration has
been given to important database topics such as primary/secondary keys, indices
and normalisation. Nevertheless, the simple technique described in this chapter
can be applied to many situations. The mechanism is as follows:

Design the table structures.
e Prepare the data for importation.

Import the data.

e Process the data.

In the next chapter, the emphasis shifts from interacting with MySQL manually
(using the MySQL Monitor) to interacting automatically with the Perl programming
language. However, before moving on, take a moment to consider one more
maxim.

Maxim 12.3 The SELECT query can do no harm.

All SELECT can do is extract data from a collection of database tables. SELECT
cannot be used to insert, delete, replace or update data, which has the effect
of making SELECT a relatively safe database query to work with. Readers are
encouraged to do just that: experiment with SELECT, safe in the knowledge that
it can do no harm.

The Maxims Repeated
Here’s a list of the maxims introduced in this chapter.

o A little database design goes a long way.
e Understand the data before designing the tables.
e The SELECT query can do no harm.



Databases

270

'S9[ge) BUP PUR SUL3I0Jd 1 UIIMII( IDUIIIIAI SSOID UOTIRID ) JO SINSII YL Z°¢T 91nSr]

*(686T)vZr-THTr: (8)TLT " LOLJDIDEY [

*° saseqeiep [£490Q/>ueguan/IdWad Yyl 03 (666T-1230-60) P33 Lwgns
“paystLLqndun

*(TO0Z)O0ET-TZT:(Z-T)692 dudH

*(£66T)80£-£0£: (£)0E pLuse|d

*(686T)LbZh-TTy: (8)TLT ' LOLJIBIDRY “[

~(£66T)80£-£0£: (£)0g pLuse|d

*(£86T)9TTE-2TITE: (OTI¥8 "V S'N "LdS "pesy ' [3IBN 'd0dd
“paystgndun

" (S86T)292-£62: (£-2)¥E dudn

“(¥86T)6/